A340388 Let n = p_1*p_2*...*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 5^(p_1 - 1)*13^(p_2 - 1)*17^(p_3 - 1)*...*A002144(k)^(p_k - 1).
1, 5, 25, 65, 625, 325, 15625, 1105, 4225, 8125, 9765625, 5525, 244140625, 203125, 105625, 32045, 152587890625, 71825, 3814697265625, 138125, 2640625, 126953125, 2384185791015625, 160225, 17850625, 3173828125, 1221025, 3453125, 37252902984619140625
Offset: 1
Examples
12 = 3 * 2 * 2, so a(12) = 5^(3-1) * 13^(2-1) * 17^(2-1) = 5525. 15 = 5 * 3, so a(15) = 5^(5-1) * 13^(3-1) = 105625.
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
Programs
-
PARI
a(n) = my(f=factor(n), w=omega(n), p=1, product=1); forstep(i=w, 1, -1, for(j=1, f[i,2], p=nextprime(p+1); while(!(p%4==1), p=nextprime(p+1)); product *= p^(f[i,1]-1))); product
Comments