cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340388 Let n = p_1*p_2*...*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 5^(p_1 - 1)*13^(p_2 - 1)*17^(p_3 - 1)*...*A002144(k)^(p_k - 1).

Original entry on oeis.org

1, 5, 25, 65, 625, 325, 15625, 1105, 4225, 8125, 9765625, 5525, 244140625, 203125, 105625, 32045, 152587890625, 71825, 3814697265625, 138125, 2640625, 126953125, 2384185791015625, 160225, 17850625, 3173828125, 1221025, 3453125, 37252902984619140625
Offset: 1

Views

Author

Jianing Song, Apr 24 2021

Keywords

Comments

Analog of A037019: this is an easy way to produce a number k such that A002654(k) = n, or equivalently, a number k whose prime factors are all congruent to 1 modulo 4 and with exactly n divisors.

Examples

			12 = 3 * 2 * 2, so a(12) = 5^(3-1) * 13^(2-1) * 17^(2-1) = 5525.
15 = 5 * 3, so a(15) = 5^(5-1) * 13^(3-1) = 105625.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=factor(n), w=omega(n), p=1, product=1); forstep(i=w, 1, -1, for(j=1, f[i,2], p=nextprime(p+1); while(!(p%4==1), p=nextprime(p+1)); product *= p^(f[i,1]-1))); product

Formula

By definition a(n) >= A018782(n) for all n. Note that a(16) = 32045 is strictly larger than A018782(16) = 27625. The "exceptional" numbers k such that a(k) > A018782(k) are listed in A340624.
If n = p for prime p or n = pq for primes p >= q, then a(n) = A018782(n).