This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340393 #30 Jan 12 2021 19:10:46 %S A340393 2,3,8,5,11,7,26,15,17,11,43,13,23,23,80,17,47,19,89,31,35,23,171,35, %T A340393 41,63,151,29,95,31,242,47,53,47,175,37,59,55,521,41,159,43,323,131, %U A340393 71,47,683,63,107,71,433,53,191,71,1175,79,89,59,527,61,95,223,728 %N A340393 Treat the prime factors of n in ascending order as digits of a number in base "greatest prime factor + 1" and convert this number back to a decimal number. %H A340393 Alois P. Heinz, <a href="/A340393/b340393.txt">Table of n, a(n) for n = 2..20000</a> %F A340393 a(p) = p for prime p. %e A340393 Some examples for the calculation of a(n): %e A340393 (For digits 10,11...36 the letters A,B...Z are used.) %e A340393 n -> prime factors -> a(n)(base) -> a(n)(base 10) %e A340393 6 -> 2 * 3 -> 23 (4) -> 11 %e A340393 20 -> 2 * 2 * 5 -> 225 (6) -> 89 %e A340393 33 -> 3 * 11 -> 3B (12) -> 47 %e A340393 56 -> 2 * 2 * 2 * 7 -> 2227 (8) -> 1175 %e A340393 62 -> 2 * 31 -> 2U (32) -> 95 %e A340393 72 -> 2 * 2 * 2 * 3 * 3 ->22233 (4) -> 687 %e A340393 100 -> 2 * 2 * 5 * 5 -> 2255 (6) -> 539 %e A340393 910 -> 2 * 5 * 7 * 13 -> 257D (14) -> 6579 %p A340393 a:= n-> (l-> (m-> add(l[-i]*m^(i-1), i=1..nops(l)))(1+ %p A340393 max(l)))(map(i-> i[1]$i[2], sort(ifactors(n)[2]))): %p A340393 seq(a(n), n=2..77); # _Alois P. Heinz_, Jan 09 2021 %o A340393 (Python) %o A340393 def A(startn,lastn=0): %o A340393 a,n,lastn=[],startn,max(lastn,startn) %o A340393 while n<=lastn: %o A340393 i,j,v,m,f=2,0,0,n,[] %o A340393 while i<m**(0.5)+0.1: %o A340393 if m//i==m/i: %o A340393 f.append(i) %o A340393 m,i=m//i,1 %o A340393 i+=1 %o A340393 f.append(m) %o A340393 while j<len(f):v,j=v+f[j]*((f[len(f)-1]+1)**(len(f)-j-1)),j+1 %o A340393 print(str(n)+" "+str(v)) %o A340393 a.append([v]) %o A340393 n+=1 %o A340393 return a %o A340393 (Python) %o A340393 from sympy import factorint %o A340393 def fromdigits(d, b): %o A340393 n = 0 %o A340393 for di in d: n *= b; n += di %o A340393 return n %o A340393 def a(n): %o A340393 f = sorted(factorint(n, multiple=True)) %o A340393 return fromdigits(f, f[-1]+1) %o A340393 print([a(n) for n in range(2, 76)]) # _Michael S. Branicky_, Jan 06 2021 %o A340393 (PARI) a(n) = my(f=factor(n), list=List()); for (k=1, #f~, for (j=1, f[k, 2], listput(list, f[k,1]))); fromdigits(Vec(list), vecmax(f[,1])+1); \\ _Michel Marcus_, Jan 06 2021 %Y A340393 Cf. A037274 (home primes), A037276, A340394. %K A340393 nonn,look,base %O A340393 2,1 %A A340393 _S. Brunner_, Jan 06 2021