This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340424 #33 Jan 10 2021 11:23:12 %S A340424 1,4,0,8,0,1,15,0,4,1,21,0,8,4,2,33,0,15,8,8,2,41,0,21,15,16,8,4,56,0, %T A340424 33,21,30,16,16,4,69,0,41,33,42,30,32,16,7,87,0,56,41,66,42,60,32,28, %U A340424 8,99,0,69,56,82,66,84,60,56,32,12,127,0,87,69,112,82,132,84,105,64,48,14 %N A340424 Triangle read by rows: T(n,k) = A024916(n-k+1)*A002865(k-1), 1 <= k <= n. %C A340424 Conjecture: the sum of row n equals A066186(n), the sum of all parts of all partitions of n. %e A340424 Triangle begins: %e A340424 1; %e A340424 4, 0; %e A340424 8, 0, 1; %e A340424 15, 0, 4, 1; %e A340424 21, 0, 8, 4, 2; %e A340424 33, 0, 15, 8, 8, 2; %e A340424 41, 0, 21, 15, 16 8, 4; %e A340424 56, 0, 33, 21, 30, 16, 16, 4; %e A340424 69, 0, 41, 33, 42, 30, 32, 16, 7; %e A340424 87, 0, 56, 41, 66, 42, 60, 32, 28, 8; %e A340424 99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12; %e A340424 ... %e A340424 For n = 6 the calculation of every term of row 6 is as follows: %e A340424 -------------------------- %e A340424 k A002865 T(6,k) %e A340424 -------------------------- %e A340424 1 1 * 33 = 33 %e A340424 2 0 * 21 = 0 %e A340424 3 1 * 15 = 15 %e A340424 4 1 * 8 = 8 %e A340424 5 2 * 4 = 8 %e A340424 6 2 * 1 = 2 %e A340424 . A024916 %e A340424 -------------------------- %e A340424 The sum of row 6 is 33 + 0 + 15 + 8 + 8 + 2 = 66, equaling A066186(6) = 66. %Y A340424 Mirror of A245099. %Y A340424 Columns 1, 3 and 4 are A024916 (partial sums of A000203). %Y A340424 Column 2 gives A000004. %Y A340424 Columns 5 and 6 give A327329. %Y A340424 Columns 7 and 8 give A243980. %Y A340424 Leading diagonal gives A002865. %Y A340424 Cf. A066186. %K A340424 nonn,tabl %O A340424 1,2 %A A340424 _Omar E. Pol_, Jan 07 2021