This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340425 #22 Jan 07 2021 19:25:23 %S A340425 1,4,4,16,192,16,64,8960,8960,64,256,417792,4542720,417792,256,1024, %T A340425 19480576,2280570880,2280570880,19480576,1024,4096,908328960, %U A340425 1143668117504,12116689944576,1143668117504,908328960,4096 %N A340425 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of spanning trees of odd Aztec rectangle of order (n, k). %D A340425 Mihai Ciucu, Matchings and applications. Department of Mathematics, Indiana University, Bloomington, IN 47405. See Lecture 12. %F A340425 T(n,k) = T(k,n). %F A340425 T(n,k) = 4^(2*n*k-n-k) * Product_{a=1..n-1} Product_{b=1..k-1} (1 - sin(a*Pi/(2*n))^2 * sin(b*Pi/(2*k))^2). %F A340425 T(n,k) = 4^(2*n*k-n-k) * Product_{a=1..n-1} Product_{b=1..k-1} (1 - cos(a*Pi/(2*n))^2 * cos(b*Pi/(2*k))^2). %F A340425 T(n,k) = 4^(2*n*k-n-k) * Product_{a=1..n-1} Product_{b=1..k-1} (1 - sin(a*Pi/(2*n))^2 * cos(b*Pi/(2*k))^2). %e A340425 Square array begins: %e A340425 1, 4, 16, 64, 256, ... %e A340425 4, 192, 8960, 417792, 19480576, ... %e A340425 16, 8960, 4542720, 2280570880, 1143668117504, ... %e A340425 64, 417792, 2280570880, 12116689944576, 64046643170770944, ... %e A340425 256, 19480576, 1143668117504, 64046643170770944, 3544863978266468352000, ... %o A340425 (PARI) default(realprecision, 120); %o A340425 {T(n,k) = round(4^(2*n*k-n-k)*prod(a=1, n-1, prod(b=1, k-1, 1-(sin(a*Pi/(2*n))*sin(b*Pi/(2*k)))^2)))} %o A340425 (Python) %o A340425 # Using graphillion %o A340425 from graphillion import GraphSet %o A340425 def make_OD_nk(n, k): %o A340425 n += 1 %o A340425 k += 1 %o A340425 grids = [] %o A340425 s = k * n %o A340425 for i in range(1, k * n, k): %o A340425 for j in range(1, k): %o A340425 a, b = i + j - 1, i + j %o A340425 c = s + a %o A340425 if i > 1: %o A340425 grids.extend([(c - k, a), (c - k, b)]) %o A340425 if i < k * (n - 1) + 1: %o A340425 grids.extend([(c, a), (c, b)]) %o A340425 return grids %o A340425 def A340425(n, k): %o A340425 universe = make_OD_nk(n, k) %o A340425 GraphSet.set_universe(universe) %o A340425 spanning_trees = GraphSet.trees(is_spanning=True) %o A340425 return spanning_trees.len() %o A340425 print([A340425(j + 1, i - j + 1) for i in range(7) for j in range(i + 1)]) %Y A340425 Main diagonal gives A340352. %Y A340425 Cf. A340427. %K A340425 nonn,tabl %O A340425 1,2 %A A340425 _Seiichi Manyama_, Jan 07 2021