This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340426 #26 Mar 07 2021 21:02:14 %S A340426 1,3,0,4,0,1,7,0,3,1,6,0,4,3,2,12,0,7,4,6,2,8,0,6,7,8,6,4,15,0,12,6, %T A340426 14,8,12,4,13,0,8,12,12,14,16,12,7,18,0,15,8,24,12,28,16,21,8,12,0,13, %U A340426 15,16,24,14,28,28,24,12,28,0,18,13,30,16,48,24,49,32,36,14,14,0,12 %N A340426 Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n. %C A340426 Conjecture: the sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n. %e A340426 Triangle begins: %e A340426 1; %e A340426 3, 0; %e A340426 4, 0, 1; %e A340426 7, 0, 3, 1; %e A340426 6, 0, 4, 3, 2; %e A340426 12, 0, 7, 4, 6, 2; %e A340426 8, 0, 6, 7, 8, 6, 4; %e A340426 15, 0, 12, 6, 14, 8, 12, 4; %e A340426 13, 0, 8, 12, 12, 14, 16, 12, 7; %e A340426 18, 0, 15, 8, 24, 12, 28, 16, 21, 8; %e A340426 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12; %e A340426 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14; %e A340426 ... %e A340426 For n = 6 the calculation of every term of row 6 is as follows: %e A340426 -------------------------- %e A340426 k A002865 T(6,k) %e A340426 -------------------------- %e A340426 1 1 * 12 = 12 %e A340426 2 0 * 6 = 0 %e A340426 3 1 * 7 = 7 %e A340426 4 1 * 4 = 4 %e A340426 5 2 * 3 = 6 %e A340426 6 2 * 1 = 2 %e A340426 . A000203 %e A340426 -------------------------- %e A340426 The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31. %Y A340426 Columns 1, 3 and 4 give A000203. %Y A340426 Column 2 gives A000004. %Y A340426 Columns 5 and 6 gives A074400. %Y A340426 Column 7 and 8 give A239050. %Y A340426 Column 9 gives A319527. %Y A340426 Column 10 gives A319528. %Y A340426 Leading diagonal gives A002865. %Y A340426 Cf. A135010, A138879. %K A340426 nonn,tabl %O A340426 1,2 %A A340426 _Omar E. Pol_, Jan 07 2021