This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340430 #13 Jan 08 2021 06:42:05 %S A340430 1,1,1,1,15,1,1,209,209,1,1,2911,32625,2911,1,1,40545,5015009,5015009, %T A340430 40545,1,1,564719,770100001,8238791743,770100001,564719,1,1,7865521, %U A340430 118247646001,13441754883649,13441754883649,118247646001,7865521,1 %N A340430 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - cos(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2). %F A340430 T(n,k) = T(k,n). %e A340430 Square array begins: %e A340430 1, 1, 1, 1, 1, ... %e A340430 1, 15, 209, 2911, 40545, ... %e A340430 1, 209, 32625, 5015009, 770100001, ... %e A340430 1, 2911, 5015009, 8238791743, 13441754883649, ... %e A340430 1, 40545, 770100001, 13441754883649, 230629380093001665, ... %o A340430 (PARI) default(realprecision, 120); %o A340430 {T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(cos(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))} %Y A340430 Main diagonal gives A340291. %Y A340430 Cf. A340427, A340428, A340432. %K A340430 nonn,tabl %O A340430 0,5 %A A340430 _Seiichi Manyama_, Jan 07 2021