This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340444 #13 Jan 08 2021 04:31:29 %S A340444 0,0,31,41,61,71,151,101,199,151,227,191,211,311,241,271,487,311,479, %T A340444 653,521,401,421,727,491,823,521,541,773,571,641,661,691,701,751,761, %U A340444 1109,821,2039,1399,1447,911,1543,971,991,1607,1061,1571,1831,1151,1171,1201,1697,2273,1291,1321,2711 %N A340444 a(n) is the least prime of the form p*q + p*r + q*r where p is the n-th prime and q and r are primes < p, or 0 if there are none. %C A340444 If prime(k) is in A023219, a(k) = 5*prime(k)+6. %H A340444 Robert Israel, <a href="/A340444/b340444.txt">Table of n, a(n) for n = 1..2000</a> %e A340444 a(7) = 151 because prime(7) = 17, and 151 = 17*3+17*5+3*5 is the least prime of the form 17*p + 17*q + p*q. %p A340444 f:= proc(n) local p,L,i,j,t; %p A340444 p:= ithprime(n); %p A340444 L:= sort([seq(seq((ithprime(i)+p)*(ithprime(j)+p)-p^2, i=1..j-1),j=2..n-1)]); %p A340444 for t in L do if isprime(t) then return t fi od: %p A340444 0 %p A340444 end proc: %p A340444 A:= map(f, [$1..100]); %o A340444 (Python) %o A340444 from sympy import isprime, prime %o A340444 def aupto(nn): %o A340444 alst, plst = [0 for i in range(nn)], [prime(i+1) for i in range(nn)] %o A340444 for n in range(1, nn+1): %o A340444 p = plst[n-1] %o A340444 t = ((p, plst[i], plst[j]) for i in range(n-2) for j in range(i+1, n-1)) %o A340444 for s in sorted(p*q + p*r + q*r for p, q, r in t): %o A340444 if isprime(s): alst[n-1]=s; break %o A340444 return alst %o A340444 print(aupto(57)) # _Michael S. Branicky_, Jan 07 2021 %Y A340444 Cf. A023219, A340439. %K A340444 nonn,look %O A340444 1,3 %A A340444 _Robert Israel_, Jan 07 2021