This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340455 #16 Mar 11 2021 11:44:46 %S A340455 1,-1,2,0,0,0,2,-2,2,1,0,0,1,-2,2,0,2,0,2,-2,0,0,0,2,2,-2,2,0,-1,0,4, %T A340455 -2,2,-1,0,0,0,0,2,0,2,0,2,-2,2,0,-2,0,2,-2,2,2,0,0,2,-2,2,1,2,-2,0, %U A340455 -2,2,0,1,2,2,-2,0,0,0,0,2,-2,4 %N A340455 G.f.: Sum_{n>=0} x^(2*n)/(1 - x^(5*n+2)) - x*Sum_{n>=0} x^(3*n)/(1 - x^(5*n+3)). %C A340455 The g.f. of this sequence equals the numerator of George E. Andrews' expression for the cube of Ramanujan's continued fraction. See references given in A007325. %F A340455 G.f.: Product_{n>=0} (1 - x^(n+1)) * (1 - x^(5*n+5)) / ( (1 - x^(5*n+2))^3 * (1 - x^(5*n+3))^3 ). %F A340455 G.f.: Product_{n>=0} (1 - x^(5*n+5))^2 * (1 - x^(5*n+1))*(1 - x^(5*n+4)) / ( (1 - x^(5*n+2))^2*(1 - x^(5*n+3))^2 ). %F A340455 G.f.: [ Sum_{n>=0} x^n/(1 - x^(5*n+3)) - x * Sum_{n>=0} x^(4*n)/(1 - x^(5*n+2)) ] * R(x), where R(q) is the expansion of Ramanujan's continued fraction (A007325). %e A340455 G.f.: P(q) = 1 - q + 2*q^2 + 2*q^6 - 2*q^7 + 2*q^8 + q^9 + q^12 - 2*q^13 + 2*q^14 + 2*q^16 + 2*q^18 - 2*q^19 + 2*q^23 + 2*q^24 - 2*q^25 + 2*q^26 - q^28 + ... %e A340455 Given the g.f. of this sequence, %e A340455 P(q) = Sum_{n>=0} q^(2*n)/(1 - q^(5*n+2)) - q*Sum_{n>=0} q^(3*n)/(1 - q^(5*n+3)) %e A340455 and the g.f. of A340456, %e A340455 Q(q) = Sum_{n>=0} q^n/(1 - q^(5*n+1)) - q^3*Sum_{n>=0} q^(4*n)/(1 - q^(5*n+4)) %e A340455 then %e A340455 R(q)^3 = P(q)/Q(q) where %e A340455 Q(q) = 1 + 2*q + 2*q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + q^7 + 2*q^8 + 2*q^9 + 2*q^10 + 2*q^12 + 4*q^13 + 2*q^14 + q^16 + ... %e A340455 R(q)^3 = 1 - 3*q + 6*q^2 - 7*q^3 + 3*q^4 + 6*q^5 - 17*q^6 + 24*q^7 - 21*q^8 + 6*q^9 + 21*q^10 - 54*q^11 + 77*q^12 - 72*q^13 + 24*q^14 + 64*q^15 + ...; %e A340455 here, R(q) is the expansion of Ramanujan's continued fraction (A007325). %o A340455 (PARI) {a(n) = my(A = prod(m=0,n\5+1, (1-x^(5*m+5) +x*O(x^n))^2 * (1-x^(5*m+1))*(1-x^(5*m+4)) / ( (1-x^(5*m+2))^2*(1-x^(5*m+3))^2 +x*O(x^n) ) ));polcoeff(A,n)} %o A340455 for(n=0,100,print1(a(n),", ")) %o A340455 (PARI) {S(j,k,n) = sum(m=0,n, x^(j*m)/(1 - x^(5*m+k) +x*O(x^n)) ) } %o A340455 {a(n) = polcoeff( S(2,2,n) - x*S(3,3,n), n)} %o A340455 for(n=0,100,print1(a(n),", ")) %Y A340455 Cf. A007325, A055102, A340456, A340453, A340454. %K A340455 sign %O A340455 0,3 %A A340455 _Paul D. Hanna_, Jan 20 2021