This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340464 #15 Jan 10 2021 22:10:30 %S A340464 313,2137,7853,10847,17911,43961,130631,138239,145967,154723,175463, %T A340464 192853,331871,359377,436481,676253,713807,824437,907969,1037557, %U A340464 2637959,2683151,3050543,3228437,3341369,3676639,3833723,4196513,4412081,4793713,4961497,5614957,5727791,5976209,8122097,8201213 %N A340464 Primes of the form p*q+r*s+t*u, where p,q,r,s,t,u are consecutive primes. %H A340464 Robert Israel, <a href="/A340464/b340464.txt">Table of n, a(n) for n = 1..10000</a> %F A340464 a(n)=prime(m)*prime(m+1)+prime(m+2)*prime(m+3)+prime(m+4)*prime(m+5) where A340463(n)=prime(m). %e A340464 a(3)=41*43+47*53+59*61=7853, where 41,43,47,53,59,61 are consecutive primes and 7853 is prime. %p A340464 select(isprime, map(i -> ithprime(i)*ithprime(i+1)+ithprime(i+2)*ithprime(i+3)+ithprime(i+4)*ithprime(i+5), [$1..1000])); %o A340464 (Python) %o A340464 from sympy import nextprime, isprime %o A340464 def aupto(nn): %o A340464 alst, consec6 = [], [2, 3, 5, 7, 11, 13] %o A340464 p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u %o A340464 while prod <= nn: %o A340464 if isprime(prod): alst.append(prod) %o A340464 consec6 = consec6[1:] + [nextprime(consec6[-1])] %o A340464 p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u %o A340464 return alst %o A340464 print(aupto(10**8)) # _Michael S. Branicky_, Jan 08 2021 %Y A340464 Cf. A340463. %K A340464 nonn %O A340464 1,1 %A A340464 _J. M. Bergot_ and _Robert Israel_, Jan 08 2021