This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340465 #15 Jan 10 2021 22:11:04 %S A340465 41,313,2137,6569,7853,10133,10847,12401,13757,14747,17569,17911, %T A340465 24001,24049,27901,31307,38729,43177,43961,44819,51607,69191,81517, %U A340465 88379,104683,107099,130631,137177,138239,145967,154487,154723,158777,162947,175463,184409,192853,196169,232499,243137,261983 %N A340465 Primes of the form prime(i)*prime(i+1)+prime(i+2)*prime(i+3)+...+prime(k-1)*prime(k). %C A340465 A prime that has more than one expression of the given form is included only once. The first such prime is a(14353) = 6858604873 = 1979*1987+...+7109*7121 = 19949*19961+...+20231*20233. %H A340465 Robert Israel, <a href="/A340465/b340465.txt">Table of n, a(n) for n = 1..10000</a> %e A340465 a(1) = 2*3+5*7 = 41. %e A340465 a(2) = 3*5+7*11+13*17 = 313. %e A340465 a(3) = 17*19+23*29+31*37 = 2137. %e A340465 a(4) = 5*7+11*13+17*19+23*29+31*37+41*43+47*53 = 6569. %e A340465 a(5) = 41*43+47*53+59*61 = 7853. %p A340465 S1:= [0,seq(ithprime(2*i)*ithprime(2*i+1),i=1..100)]: %p A340465 P1:= ListTools:-PartialSums(S1): %p A340465 S2:= [0,seq(ithprime(2*i-1)*ithprime(2*i),i=1..100)]: %p A340465 P2:= ListTools:-PartialSums(S2): %p A340465 M:= 2*max(S1): %p A340465 S:= select(t -> t < M and isprime(t), {seq(seq(P1[i]-P1[j],j=i mod 2 + 1 .. i-2,2),i=1..101)} union {seq(seq(P2[i]-P2[j],j=i mod 2 + 1..i-2,2),i=1..101)} union {seq(P2[i],i=1..101,2)}): %p A340465 sort(convert(S,list)); %o A340465 (Python) %o A340465 from sympy import isprime, nextprime, prime %o A340465 def sp2(lst): %o A340465 ans = 0 %o A340465 for i in range(0, len(lst), 2): ans += lst[i]*lst[i+1] %o A340465 return ans %o A340465 def aupto(nn): %o A340465 alst, i = [], 1 %o A340465 while True: %o A340465 consec2i = [prime(j+1) for j in range(2*i)]; sp = sp2(consec2i) %o A340465 if sp > nn: break %o A340465 while sp <= nn: %o A340465 if isprime(sp): alst.append(sp) %o A340465 consec2i = consec2i[1:] + [nextprime(consec2i[-1])]; sp = sp2(consec2i) %o A340465 i += 1 %o A340465 return sorted(alst) %o A340465 print(aupto(261983)) # _Michael S. Branicky_, Jan 08 2021 %Y A340465 Includes A340464. %K A340465 nonn %O A340465 1,1 %A A340465 _J. M. Bergot_ and _Robert Israel_, Jan 08 2021