This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340466 #26 Jan 11 2021 00:14:18 %S A340466 5,11,13,19,23,29,43,47,53,59,61,71,79,83,89,101,103,107,109,113,151, %T A340466 157,167,173,179,181,191,199,211,223,227,229,233,239,241,251,271,283, %U A340466 307,311,313,317,331,347,349,359,367,373,379,383,397,409,419,421,431 %N A340466 Primes whose binary expansion contains more 1's than 0's but at least one 0. %F A340466 { A095070 } minus { A000225 }. %F A340466 { A095070 } minus { A000668 }. %F A340466 { A095070 } intersect { A138837 }. %e A340466 71 is in the sequence because 71 is a prime and 71_10 = 1000111_2. '1000111' has four 1's and three 0's. %t A340466 Select[Range[400], PrimeQ[#] && First[d = DigitCount[#, 2]] > Last[d] > 0 &] (* _Amiram Eldar_, Jan 08 2021 *) %o A340466 (PARI) isok(n) = if (isprime(n), my(nb=#binary(n), h=hammingweight(n)); (2*h > nb) && (h < nb)); \\ _Michel Marcus_, Jan 10 2021 %o A340466 (Python) %o A340466 from sympy import sieve %o A340466 A340466_list = [p for p in sieve.primerange(1,10**4) if len(bin(p))-2 < 2*bin(p).count('1') < 2*len(bin(p))-4] # _Chai Wah Wu_, Jan 10 2021 %Y A340466 Cf. A000040, A000225, A000668, A066196, A095070, A095071, A138837. %K A340466 nonn,base,easy %O A340466 1,1 %A A340466 _Ctibor O. Zizka_, Jan 08 2021