This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340467 #26 Aug 31 2024 17:50:46 %S A340467 2,10,66,462,4290,53130,903210,17687670,406816410,11125544430, %T A340467 338431883790,11833068917670,457077357006270,20384767656323070, %U A340467 955041577211912190,49230430891074322890,2740956243836856315270,168909608387276001835590,11054926927790884163355330 %N A340467 a(n) is the n-th squarefree number having n prime factors. %C A340467 a(n) is the n-th product of n distinct primes. %C A340467 All terms are even. %C A340467 This sequence differs from A073329 which has also nonsquarefree terms. %H A340467 Alois P. Heinz, <a href="/A340467/b340467.txt">Table of n, a(n) for n = 1..350</a> %F A340467 a(n) = A340316(n,n). %F A340467 a(n) = A005117(m) <=> A072047(m) = n = A340313(m). %F A340467 A001221(a(n)) = A001222(a(n)) = n. %F A340467 a(n) < A070826(n+1), the least odd number with exactly n distinct prime divisors. %e A340467 a(1) = A000040(1) = 2. %e A340467 a(2) = A006881(2) = 10. %e A340467 a(3) = A007304(3) = 66. %e A340467 a(4) = A046386(4) = 462. %e A340467 a(5) = A046387(5) = 4290. %e A340467 a(6) = A067885(6) = 53130. %e A340467 a(7) = A123321(7) = 903210. %e A340467 a(8) = A123322(8) = 17687670. %e A340467 a(9) = A115343(9) = 406816410. %e A340467 a(10) = A281222(10) = 11125544430. %o A340467 (Python) %o A340467 from math import isqrt, prod %o A340467 from sympy import primerange, integer_nthroot, primepi %o A340467 def A340467(n): %o A340467 if n == 1: return 2 %o A340467 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A340467 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A340467 def bisection(f,kmin=0,kmax=1): %o A340467 while f(kmax) > kmax: kmax <<= 1 %o A340467 while kmax-kmin > 1: %o A340467 kmid = kmax+kmin>>1 %o A340467 if f(kmid) <= kmid: %o A340467 kmax = kmid %o A340467 else: %o A340467 kmin = kmid %o A340467 return kmax %o A340467 return bisection(f) # _Chai Wah Wu_, Aug 31 2024 %Y A340467 Main diagonal of A340316. %Y A340467 Cf. A001221, A001222, A005117, A070826, A072047, A073329, A101695, A340313. %Y A340467 Cf. A000040, A006881, A007304, A046386, A046387, A067885, A123321, A123322, A115343, A281222. %K A340467 nonn %O A340467 1,1 %A A340467 _Alois P. Heinz_, Jan 08 2021