This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340468 #13 Jan 11 2021 10:51:03 %S A340468 5,7,79,13,223,19,439, %T A340468 130753887906569681111538991218568790437537693430279000532630035672131604633987039552816424896353327834998483765849409837393409377729040653460715050958787058270805333463, %U A340468 31,34826927179023475480751694965449235272424989980919 %N A340468 a(n) is the least prime of the form 2 + Product_{i=n..m} prime(i). %C A340468 If n is in A029707, a(n) = 2+prime(n). %C A340468 If n is not in A029707 but prime(n) is in A051507, a(n) = 2+prime(n)*prime(n+1). %C A340468 a(15) > 10^1000 if it exists. %H A340468 Robert Israel, <a href="/A340468/b340468.txt">Table of n, a(n) for n = 2..14</a> %e A340468 a(2) = 2+3 = 5. %e A340468 a(3) = 2+5 = 7. %e A340468 a(4) = 2+7*11 = 79. %e A340468 a(5) = 2+11 = 13. %e A340468 a(6) = 2+13*17 = 223. %e A340468 a(7) = 2+17 = 19. %e A340468 a(8) = 2+19*23 = 439. %e A340468 a(9) = 2+23*29*...*431. %p A340468 f:= proc(n) local i,t; %p A340468 t:= 1; %p A340468 for i from n do %p A340468 t:= t*ithprime(i); %p A340468 if isprime(t+2) then return t+2 fi; %p A340468 od %p A340468 end proc: %p A340468 seq(f(n),n=2..14); %o A340468 (Python) %o A340468 from sympy import isprime, nextprime, prime %o A340468 def a(n): %o A340468 prodpnpm = pm = prime(n) %o A340468 while not isprime(2+prodpnpm): pm = nextprime(pm); prodpnpm *= pm %o A340468 return 2+prodpnpm %o A340468 print([a(n) for n in range(2, 12)]) # _Michael S. Branicky_, Jan 08 2021 %Y A340468 Cf. A029707, A051507. %K A340468 nonn %O A340468 2,1 %A A340468 _Robert Israel_, Jan 08 2021