This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340472 #37 Jan 12 2021 21:43:46 %S A340472 1,1,1,1,5,1,61,1,277,1,50521,691,540553,2,199360981,3617,3878302429, %T A340472 43867,2404879675441,174611,14814847529501,155366,69348874393137901, %U A340472 236364091,238685140977801337,1315862,4087072509293123892361,6785560294,13181680435827682794403,6892673020804 %N A340472 Numerators of an approximation to zeta(n)/Pi^n. %H A340472 Melchor Viso Martinez, <a href="http://canal-arte.net/sites/default/files/ZetaSums_1.pdf">An expression for integer zeta approximation</a> %F A340472 a(n) = numerator of lim_{x->0} of the n-th derivative of x*tan((Pi+x)/4)/((4-2^(2-n))*n!) with respect to x. %F A340472 a(2*n) = A046988(n). %e A340472 1/2, 1/6, 1/28, 1/90, 5/1488, 1/945, 61/182880, 1/9450, 277/8241408, 1/93555, 50521/14856307200, 691/638512875, ... %e A340472 Values are approximate for odd indices, exact for even indices: %e A340472 zeta(1) ~ 1/2 zeta(2) = Pi^2/6 %e A340472 zeta(3) ~ Pi^3/28 zeta(4) = Pi^4/90 %e A340472 zeta(5) ~ 5*Pi^5/1488 zeta(6) = Pi^6/945 %e A340472 zeta(7) ~ 61*Pi^7/182880, zeta(8) = Pi^8/9450 %e A340472 ... %t A340472 a[k_] := Numerator[(1/(4 (1 - 2^-k) k!) %t A340472 D[\[Lambda] Tan[(\[Pi] + \[Lambda])/4], {\[Lambda], %t A340472 k}]) /. {\[Lambda] -> 0}] %o A340472 (PARI) a(n) = {my(t=tan(x/4 + O(x*x^n))); numerator(polcoef(x*(1 + t)/(1 - t), n)/((4-2^(2-n))))} \\ _Andrew Howroyd_, Jan 10 2021 %Y A340472 Cf. A046988, A340471 (denominators). %K A340472 nonn,frac %O A340472 1,5 %A A340472 _Melchor Viso Martinez_, Jan 08 2021