This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340493 #34 Feb 03 2021 23:33:13 %S A340493 1,3,8,23,49,125,241,540,1020,2064,3710,7231,12457,22883,39053,68596, %T A340493 113751,194865,315910,526019,840939,1363524,2144528,3419185,5291079, %U A340493 8277252,12668264,19497436,29459144,44762200,66847518,100267761,148318881,219818270,322056529,472600353 %N A340493 Sequence whose partial sums give A340492. %C A340493 In other words: 1 together with the first differences of A340492. %C A340493 Conjecture: a(n) is the size of the n-th section of a table of correspondence between divisors and partitions. %F A340493 a(1) = 1. %F A340493 a(n) = A000041(n)*A000070(n-1) - A000041(n-1)*A000070(n-2), n >= 2. %e A340493 Illustration of initial terms: %e A340493 A000070: 1 2 4 7 12 19 30 %e A340493 A000041 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A340493 1 |_| | | | | | | %e A340493 2 |_ _| | | | | | %e A340493 3 |_ _ _ _| | | | | %e A340493 | | | | | %e A340493 5 |_ _ _ _ _ _ _| | | | %e A340493 | | | | %e A340493 7 |_ _ _ _ _ _ _ _ _ _ _ _| | | %e A340493 | | | %e A340493 | | | %e A340493 | | | %e A340493 11 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A340493 | | %e A340493 | | %e A340493 | | %e A340493 15 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A340493 ... %e A340493 a(n) is the area (or the number of cells) in the n-th region (or section) of the diagram. %e A340493 For n = 3 the third region of the diagram contains 8 cells, so a(3) = 8. %e A340493 For n = 7 the seventh region of the diagram contains 241 cells, so a(7) = 241. %t A340493 a[n_] := PartitionsP[n]*Count[Flatten[IntegerPartitions[n]], 1] - PartitionsP[n - 1]*Count[Flatten[IntegerPartitions[n - 1]], 1]; Table[a[n], {n, 1, 36}] (* _Robert P. P. McKone_, Jan 28 2021 *) %o A340493 (PARI) f(n) = numbpart(n)*sum(k=0, n-1, numbpart(k)); \\ A340492 %o A340493 a(n) = if (n==1, 1, f(n)-f(n-1)); \\ _Michel Marcus_, Jan 28 2021 %Y A340493 Partial sums give A340492. %Y A340493 Cf. A000041, A000070, A090982, A336811. %K A340493 nonn %O A340493 1,2 %A A340493 _Omar E. Pol_, Jan 10 2021