cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340493 Sequence whose partial sums give A340492.

This page as a plain text file.
%I A340493 #34 Feb 03 2021 23:33:13
%S A340493 1,3,8,23,49,125,241,540,1020,2064,3710,7231,12457,22883,39053,68596,
%T A340493 113751,194865,315910,526019,840939,1363524,2144528,3419185,5291079,
%U A340493 8277252,12668264,19497436,29459144,44762200,66847518,100267761,148318881,219818270,322056529,472600353
%N A340493 Sequence whose partial sums give A340492.
%C A340493 In other words: 1 together with the first differences of A340492.
%C A340493 Conjecture: a(n) is the size of the n-th section of a table of correspondence between divisors and partitions.
%F A340493 a(1) = 1.
%F A340493 a(n) = A000041(n)*A000070(n-1) - A000041(n-1)*A000070(n-2), n >= 2.
%e A340493 Illustration of initial terms:
%e A340493        A000070:  1 2   4     7        12            19                    30
%e A340493 A000041         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A340493      1         |_| |   |     |         |             |                     |
%e A340493      2         |_ _|   |     |         |             |                     |
%e A340493      3         |_ _ _ _|     |         |             |                     |
%e A340493                |             |         |             |                     |
%e A340493      5         |_ _ _ _ _ _ _|         |             |                     |
%e A340493                |                       |             |                     |
%e A340493      7         |_ _ _ _ _ _ _ _ _ _ _ _|             |                     |
%e A340493                |                                     |                     |
%e A340493                |                                     |                     |
%e A340493                |                                     |                     |
%e A340493     11         |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|                     |
%e A340493                |                                                           |
%e A340493                |                                                           |
%e A340493                |                                                           |
%e A340493     15         |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A340493 ...
%e A340493 a(n) is the area (or the number of cells) in the n-th region (or section) of the diagram.
%e A340493 For n = 3 the third region of the diagram contains 8 cells, so a(3) = 8.
%e A340493 For n = 7 the seventh region of the diagram contains 241 cells, so a(7) = 241.
%t A340493 a[n_] := PartitionsP[n]*Count[Flatten[IntegerPartitions[n]], 1] - PartitionsP[n - 1]*Count[Flatten[IntegerPartitions[n - 1]], 1]; Table[a[n], {n, 1, 36}] (* _Robert P. P. McKone_, Jan 28 2021 *)
%o A340493 (PARI) f(n) = numbpart(n)*sum(k=0, n-1, numbpart(k)); \\ A340492
%o A340493 a(n) = if (n==1, 1, f(n)-f(n-1)); \\ _Michel Marcus_, Jan 28 2021
%Y A340493 Partial sums give A340492.
%Y A340493 Cf. A000041, A000070, A090982, A336811.
%K A340493 nonn
%O A340493 1,2
%A A340493 _Omar E. Pol_, Jan 10 2021