cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340511 Numbers k such that there exists a group of order k which has no subgroup of order d, for some divisor d of k.

Original entry on oeis.org

12, 24, 36, 48, 56, 60, 72, 75, 80, 84, 96, 108, 112, 120, 132, 144, 150, 156, 160, 168, 180, 192, 196, 200, 204, 216, 225, 228, 240, 252, 264, 276, 280, 288, 294, 300, 312, 320, 324, 336, 348, 351, 360, 363, 372, 375, 384, 392, 396, 400, 405, 408, 420
Offset: 1

Views

Author

Des MacHale, Jan 24 2021

Keywords

Comments

Suggested by the fact that the converse to Lagrange's theorem does not hold. These numbers might be called "Non-Converse Lagrange Theorem Orders".
A subsequence of A066085. The first difference between them is that 224 is missing from the present sequence (see MacHale-Manning, 2016). The sequence of terms of A066085 not in the present sequence is infinite, and begins 224, 2464, ... [This sequence is now A341048. - Bernard Schott, Feb 15 2021]
From Jianing Song, Dec 06 2021: (Start)
If k is a term, gcd(k,m) = 1, then k*m is again a term. Proof: If G is a group of order k without a subgroup of order k', then G X C_m has no subgroup of order k'*m. Suppose that it has, let G' be that subgroup. For every (a,b) in G', let m_0 be a multiple of m congruent to 1 modulo k, then (a,b)^(m_0) = (a,1) in G'; let k_0 be a multiple of k congruent to 1 modulo m, then (a,b)^(k_0) = (1,b) in G'. This shows that G' itself is of the form H X C_{m'}, where H is a subgroup of G and m' divides m. We have |H|*m' = k'*m, so |H| = k' and m' = m, contradicting with our assumption that G has no subgroup of order k'.
On the other hand, if gcd(k,m) > 1, then k*m need not be a term, as 56 is here but 224 is missing. In fact, N has a proper divisor here but N itself is not in this sequence if and only if N is in A341048. For the "only if" part, if N = k*m is a CLT order and k is a NCLT order, then k is a NSS order. Since every multiple of a NSS order is a NSS order, N is a NSS order, so by definition N is in A341048. The "if" part follows from MacHale-Manning, 2016, Corollary 13, Page 5.
Conjecture: If k = p^a*q^b, where p, q are primes, q !== 1 (mod p), b >= ord(q,p), then k is a term of this sequence, unless k is an NSS-CLT order of the form described in MacHale-Manning, 2016, Theorem 8, Page 5. Here ord(q,p) is the multiplicative order of q modulo p. Moreover, if k satisfies this condition, it seems that for each NCLT group of order k, the missing orders of subgroups are of the form p^a'*q^b' where either a' = a or b' = b, and a' = a if p == 1 (mod q) or a < ord(p,q). (End)

Examples

			12 belongs to this sequence because there is a group of order 12 (A_4) which has no subgroup of order 6, despite the fact that 6 divides 12.
		

Crossrefs

Extensions

a(35)-a(53) from Bernard Schott, Feb 15 2021