cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340516 Let p_i (i=1..m) denote the primes <= n, and let e_i be the maximum number such that p_i^e_i <= n; then a(n) = Product_{i=1..m} p_i^(2*e_i-1).

This page as a plain text file.
%I A340516 #17 Feb 23 2022 10:48:51
%S A340516 1,2,6,24,120,120,840,3360,30240,30240,332640,332640,4324320,4324320,
%T A340516 4324320,17297280,294053760,294053760,5587021440,5587021440,
%U A340516 5587021440,5587021440,128501493120,128501493120,3212537328000,3212537328000,28912835952000,28912835952000,838472242608000
%N A340516 Let p_i (i=1..m) denote the primes <= n, and let e_i be the maximum number such that p_i^e_i <= n; then a(n) = Product_{i=1..m} p_i^(2*e_i-1).
%C A340516 This is a lower bound on A340515.
%D A340516 Heffernan, Robert, Des MacHale, and Brendan McCann. "Cayley’s Theorem Revisited: Embeddings of Small Finite Groups." Mathematics Magazine 91.2 (2018): 103-111.
%H A340516 Michael De Vlieger, <a href="/A340516/b340516.txt">Table of n, a(n) for n = 1..2242</a>
%H A340516 Heffernan, Robert, Des MacHale, and Brendan McCann, <a href="https://arxiv.org/abs/1706.09286">Minimal embeddings of small finite groups</a>, arXiv:1706.09286 [math.GR], 2017. See Lemma 2.
%t A340516 {1}~Join~Table[Times @@ Map[#^(2 Floor@ Log[#, n] - 1) &, Prime@ Range@ PrimePi@ n], {n, 2, 30}] (* _Michael De Vlieger_, Feb 23 2022 *)
%Y A340516 Cf. A340514, A340515.
%K A340516 nonn
%O A340516 1,2
%A A340516 _N. J. A. Sloane_, Feb 03 2021