This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340524 #15 Jan 13 2021 14:29:08 %S A340524 1,2,0,2,0,1,3,0,2,1,2,0,2,2,2,4,0,3,2,4,2,2,0,2,3,4,4,4,4,0,4,2,6,4, %T A340524 8,4,3,0,2,4,4,6,8,8,7,4,0,4,2,8,4,12,8,14,8,2,0,3,4,4,8,8,12,14,16, %U A340524 12,6,0,4,3,8,4,16,8,21,16,24,14,2,0,2,4,6,8,8,16,14,24,24,28,21 %N A340524 Triangle read by rows: T(n,k) = A000005(n-k+1)*A002865(k-1), 1 <= k <= n. %C A340524 Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n. %e A340524 Triangle begins: %e A340524 1; %e A340524 2, 0; %e A340524 2, 0, 1; %e A340524 3, 0, 2, 1; %e A340524 2, 0, 2, 2, 2; %e A340524 4, 0, 3, 2, 4, 2; %e A340524 2, 0, 2, 3, 4, 4, 4; %e A340524 4, 0, 4, 2, 6, 4, 8, 4; %e A340524 3, 0, 2, 4, 4, 6, 8, 8, 7; %e A340524 4, 0, 4, 2, 8, 4, 12, 8, 14, 8; %e A340524 2, 0, 3, 4, 4, 8, 8, 12, 14, 16, 12; %e A340524 6, 0, 4, 3, 8, 4, 16, 8, 21, 16, 24, 14; %e A340524 2, 0, 2, 4, 6, 8, 8, 16, 14, 24, 24, 28, 21; %e A340524 ... %e A340524 For n = 6 the calculation of every term of row 6 is as follows: %e A340524 -------------------------- %e A340524 k A002865 T(6,k) %e A340524 -------------------------- %e A340524 1 1 * 4 = 4 %e A340524 2 0 * 2 = 0 %e A340524 3 1 * 3 = 3 %e A340524 4 1 * 2 = 2 %e A340524 5 2 * 2 = 4 %e A340524 6 2 * 1 = 2 %e A340524 . A000005 %e A340524 -------------------------- %e A340524 The sum of row 6 is 4 + 0 + 3 + 2 + 4 + 2 = 15, equaling A138137(6) = 15. %o A340524 (PARI) f(n) = if (n==0, 1, numbpart(n) - numbpart(n-1)); \\ A002865 %o A340524 T(n, k) = numdiv(n-k+1) * f(k-1); \\ _Michel Marcus_, Jan 13 2021 %Y A340524 Row sums give A138137 (conjectured). %Y A340524 Columns 1, 3 and 4 are A000005. %Y A340524 Column 2 gives A000004. %Y A340524 Columns 5 and 6 give A062011. %Y A340524 Columns 7 and 8 give A145154, n >= 1. %Y A340524 Leading diagonal gives A002865. %Y A340524 Cf. A339304 (irregular or expanded version). %Y A340524 Cf. A135010, A138121, A221531, A336811, A339106, A340424, A340426. %K A340524 nonn,tabl %O A340524 1,2 %A A340524 _Omar E. Pol_, Jan 10 2021