This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340525 #14 Jan 11 2021 23:10:43 %S A340525 1,3,0,5,0,1,8,0,3,1,10,0,5,3,2,14,0,8,5,6,2,16,0,10,8,10,6,4,20,0,14, %T A340525 10,16,10,12,4,23,0,16,14,20,16,20,12,7,27,0,20,16,28,20,32,20,21,8, %U A340525 29,0,23,20,32,28,40,32,35,24,12,35,0,27,23,40,32,56,40,56,40,36,14 %N A340525 Triangle read by rows: T(n,k) = A006218(n-k+1)*A002865(k-1), 1 <= k <= n. %C A340525 Conjecture: the sum of row n equals A006128(n), the total number of parts in all partitions of n. %e A340525 Triangle begins: %e A340525 1; %e A340525 3, 0; %e A340525 5, 0, 1; %e A340525 8, 0, 3, 1; %e A340525 10, 0, 5, 3, 2; %e A340525 14, 0, 8, 5, 6, 2; %e A340525 16, 0, 10, 8, 10, 6, 4; %e A340525 20, 0, 14, 10, 16, 10, 12, 4; %e A340525 23, 0, 16, 14, 20, 16, 20, 12, 7; %e A340525 27, 0, 20, 16, 28, 20, 32, 20, 21, 8; %e A340525 29, 0, 23, 20, 32, 28, 40, 32, 35, 24, 12; %e A340525 35, 0, 27, 23, 40, 32, 56, 40, 56, 40, 36, 14; %e A340525 ... %e A340525 For n = 6 the calculation of every term of row 6 is as follows: %e A340525 -------------------------- %e A340525 k A002865 T(6,k) %e A340525 -------------------------- %e A340525 1 1 * 14 = 14 %e A340525 2 0 * 10 = 0 %e A340525 3 1 * 8 = 8 %e A340525 4 1 * 5 = 5 %e A340525 5 2 * 3 = 6 %e A340525 6 2 * 1 = 2 %e A340525 . A006218 %e A340525 -------------------------- %e A340525 The sum of row 6 is 14 + 0 + 8 + 5 + 6 + 2 = 35, equaling A006128(6). %Y A340525 Mirror of A245095. %Y A340525 Row sums give A006128 (conjectured). %Y A340525 Columns 1, 3 and 4 are A006218. %Y A340525 Column 2 gives A000004. %Y A340525 Leading diagonal gives A002865. %Y A340525 Cf. A135010, A138121, A221531, A336811, A339106, A340424, A340524, A340426. %K A340525 nonn,tabl %O A340525 1,2 %A A340525 _Omar E. Pol_, Jan 10 2021