This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340526 #37 Jul 25 2021 13:47:29 %S A340526 1,3,1,5,3,2,8,5,6,3,10,8,10,9,5,14,10,16,15,15,7,16,14,20,24,25,21, %T A340526 11,20,16,28,30,40,35,33,15,23,20,32,42,50,56,55,45,22,27,23,40,48,70, %U A340526 70,88,75,66,30,29,27,46,60,80,98,110,120,110,90,42,35,29,54,69,100,112,154,150,176,150,126,56 %N A340526 Triangle read by rows: T(n,k) = A006218(n-k+1)*A000041(k-1), 1 <= k <= n. %C A340526 Conjecture 1: T(n,k) is the total number of divisors of the terms that are in the k-th blocks of the first n rows of triangle A176206. %C A340526 Conjecture 2: the sum of row n equals A284870, the total number of parts in all partitions of all positive integers <= n. %C A340526 The above conjectures are connected due to the correspondence between divisors and partitions (cf. A336811). %e A340526 Triangle begins: %e A340526 1; %e A340526 3, 1; %e A340526 5, 3, 2; %e A340526 8, 5, 6, 3; %e A340526 10, 8, 10, 9, 5; %e A340526 14, 10, 16, 15, 15, 7; %e A340526 16, 14, 20, 24, 25, 21, 11; %e A340526 20, 16, 28, 30, 40, 35, 33, 15; %e A340526 23, 20, 32, 42, 50, 56, 55, 45, 22; %e A340526 27, 23, 40, 48, 70, 70, 88, 75, 66, 30; %e A340526 29, 27, 46, 60, 80, 98, 110, 120, 110, 90, 42; %e A340526 35, 29, 54, 69, 100, 112, 154, 150, 176, 150, 126, 56; %e A340526 ... %e A340526 For n = 6 the calculation of every term of row 6 is as follows: %e A340526 -------------------------- %e A340526 k A000041 T(6,k) %e A340526 1 1 * 14 = 14 %e A340526 2 1 * 10 = 10 %e A340526 3 2 * 8 = 16 %e A340526 4 3 * 5 = 15 %e A340526 5 5 * 3 = 15 %e A340526 6 7 * 1 = 7 %e A340526 . A006218 %e A340526 -------------------------- %e A340526 The sum of row 6 is 14 + 10 + 16 + 15 + 15 + 7 = 77, equaling A284870(6). %o A340526 (PARI) f(n) = sum(k=1, n, n\k); \\ A006218 %o A340526 T(n,k) = f(n-k+1)*numbpart(k-1); \\ _Michel Marcus_, Jan 15 2021 %Y A340526 Columns 1 and 2 give A006218. %Y A340526 Leading diagonal gives A000041. %Y A340526 Row sums give A284870. %Y A340526 Cf. A176206, A221531, A339106, A340424, A340425, A340524, A340426, A340527, A336811. %K A340526 nonn,tabl %O A340526 1,2 %A A340526 _Omar E. Pol_, Jan 10 2021