cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340530 Irregular triangle read by rows T(n,k) in which row n has length is A000070(n-1) and every column k is A006218, (n >= 1, k >= 1).

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 1, 8, 5, 3, 3, 1, 1, 1, 10, 8, 5, 5, 3, 3, 3, 1, 1, 1, 1, 1, 14, 10, 8, 8, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 16, 14, 10, 10, 8, 8, 8, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 16, 14, 14, 10, 10, 10, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Omar E. Pol, Jan 10 2021

Keywords

Comments

The sum of row n equals A284870(n), the total number of parts in all partitions of all positive integers <= n. It is conjectured that this property is due to the correspondence between divisors and partitions. For more information see A336811.

Examples

			Triangle begins:
   1;
   3,  1;
   5,  3,  1,  1;
   8,  5,  3,  3, 1, 1, 1;
  10,  8,  5,  5, 3, 3, 3, 1, 1, 1, 1, 1;
  14, 10,  8,  8, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
...
For n = 5 the length of row 5 is A000070(4) = 12.
The sum of row 5 is 10 + 8 + 5 + 5 + 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 = 42, equaling A284870(5).
		

Crossrefs

Row sums give A284870.
Cf. A340526 (a regular version).
Members of the same family are: A176206, A337209, A339258, A340531.

Formula

a(m) = A006218(A176206(m)), assuming A176206 has offset 1.
T(n,k) = A006218(A176206(n,k)), assuming A176206 has offset 1.