cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340544 Numbers from A340131 that are not multiples of 3.

Original entry on oeis.org

5, 11, 29, 44, 50, 83, 98, 104, 116, 128, 140, 146, 245, 260, 266, 278, 290, 302, 308, 332, 344, 377, 380, 395, 401, 410, 416, 434, 449, 455, 731, 746, 752, 764, 776, 788, 794, 818, 830, 863, 866, 881, 887, 896, 902, 920, 935, 941, 980, 992, 1025, 1028, 1043
Offset: 1

Views

Author

Gennady Eremin, Jan 11 2021

Keywords

Comments

Terms are reduced, i.e., ternary codes do not have trailing zeros.
The term is a digitized Motzkin path that starts with an up step and ends with a down step. Such a path has neither leading nor final flat steps, i.e., the ternary code of the corresponding term has no finite 0's. Recall that in ternary code, 1's are up steps, and 2's are down steps.
The number of terms with a ternary code of length k is A026107(k-1). For instance, 7 (seven) reduced terms 83, 98, 104, 116, 128, 140, and 146 have a ternary length of 5, namely 10002, 10122, 10212, 11022, 11202, 12012, and 12102. Respectively A026107(4) = 7.

Crossrefs

Intersection of A001651 and A340131.
Subsequences: A134752, A168607.
Cf. A026107.

Programs

  • Python
    def digits(n, b):
      out = []
      while n >= b:
        out.append(n % b)
        n //= b
      return [n] + out[::-1]
    def ok(n):
      if n%3 == 0: return False
      t = digits(n, 3)
      if t.count(1) != t.count(2): return False
      return all(t[:i].count(1) >= t[:i].count(2) for i in range(1, len(t)))
    print([n for n in range(750) if ok(n)]) # after Michael S. Branicky (A340131)