cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340545 Number of main classes of centrally symmetric diagonal Latin squares of order n.

This page as a plain text file.
%I A340545 #30 Aug 08 2023 22:21:57
%S A340545 1,0,0,1,2,0,32,301,430090
%N A340545 Number of main classes of centrally symmetric diagonal Latin squares of order n.
%C A340545 A centrally symmetric diagonal Latin square is a square with one-to-one correspondence between elements within all pairs a[i, j] and a[n-1-i, n-1-j] (with numbering of rows and columns from 0 to n-1).
%C A340545 It seems that a(n)=0 for n==2 (mod 4).
%C A340545 Centrally symmetric Latin squares are Latin squares, so a(n) <= A287764(n).
%C A340545 The canonical form (CF) of a square is the lexicographically minimal item within the corresponding main class of diagonal Latin square.
%C A340545 Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that A340550(n) <= a(n). - _Eduard I. Vatutin_, May 28 2021
%H A340545 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_dls_centr_symm.pdf">Properties of central symmetry for diagonal Latin squares</a>, High-performance computing systems and technologies, No. 1 (8), 2018, pp. 74-78. (in Russian)
%H A340545 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, <a href="https://jpit.az/uploads/article/az/2019_2/CENTRAL_SYMMETRY_PROPERTIES_FOR_DIAGONAL_LATIN_SQUARES.pdf">Central Symmetry Properties for Diagonal Latin Squares</a>, Problems of Information Technology, No. 2, 2019, pp. 3-8. doi: 10.25045/jpit.v10.i2.01.
%H A340545 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H A340545 E. I. Vatutin, <a href="https://vk.com/wall162891802_1448">About the number of main classes of centrally symmetric diagonal Latin squares of orders 1-9</a> (in Russian).
%H A340545 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1635">On the interconnection between double and central symmetries in diagonal Latin squares</a> (in Russian).
%H A340545 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A340545 For n=4 there is a single CF:
%e A340545   0 1 2 3
%e A340545   2 3 0 1
%e A340545   3 2 1 0
%e A340545   1 0 3 2
%e A340545 so a(4)=1.
%e A340545 For n=5 there are two different CFs:
%e A340545   0 1 2 3 4   0 1 2 3 4
%e A340545   2 3 4 0 1   1 3 4 2 0
%e A340545   4 0 1 2 3   4 2 1 0 3
%e A340545   1 2 3 4 0   2 0 3 4 1
%e A340545   3 4 0 1 2   3 4 0 1 2
%e A340545 so a(5)=2.
%e A340545 Example of a centrally symmetric diagonal Latin square of order n=9:
%e A340545   0 1 2 3 4 5 6 7 8
%e A340545   6 3 0 2 7 8 1 4 5
%e A340545   3 2 1 8 6 7 0 5 4
%e A340545   7 8 6 5 1 3 4 0 2
%e A340545   8 6 4 7 2 0 5 3 1
%e A340545   2 7 5 6 8 4 3 1 0
%e A340545   5 4 7 0 3 1 8 2 6
%e A340545   4 5 8 1 0 2 7 6 3
%e A340545   1 0 3 4 5 6 2 8 7
%Y A340545 Cf. A293777, A293778, A287764, A340550.
%K A340545 nonn,more,hard
%O A340545 1,5
%A A340545 _Eduard I. Vatutin_, Jan 11 2021