A340555 T(n, k) = [x^k] (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)). Irregular triangle read by rows, for n >= 0 and 0 <= k <= 2^n.
0, 0, 1, 0, 0, 3, 0, 3, 0, 0, 7, 0, 49, 0, 49, 0, 7, 0, 0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0, 0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0
Offset: 0
Examples
Triangle begins: [0] [0] [1] [0, 1, 0] [2] [0, 3, 0, 3, 0] [3] [0, 7, 0, 49, 0, 49, 0, 7, 0] [4] [0, 15, 0, 525, 0, 4095, 0, 10725, 0, 10725, 0, 4095, 0, 525, 0, 15, 0] [5] [0, 31, 0, 4805, 0, 195083, 0, 3260673, 0, 27172275, 0, 124992465, 0, 336518175, 0, 548043885, 0, 548043885, 0, 336518175, 0, 124992465, 0, 27172275, 0, 3260673, 0, 195083, 0, 4805, 0, 31, 0]
Crossrefs
Cf. A340263.
Programs
-
Maple
CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x)),0]: Tpoly := proc(n) (2^n-1)*2^(-n-1)*((x+1)^(2^n) - (x-1)^(2^n)) end: seq(print(CoeffList(Tpoly(n))), n=0..5);
-
SageMath
def A340555(): a, b, c = 1, 1, 1 yield [0] while True: c *= 2 a *= b b = sum(binomial(c, 2 * k) * x ^ (2 * k) for k in range(c + 1)) q = ((b - (c - 1) * x * a)).list() yield [-q[i] * (i % 2) for i in range(c + 1)] A340555_row = A340555() for _ in range(6): print(next(A340555_row))