This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340567 #17 Jan 11 2021 23:16:24 %S A340567 0,0,1,4,11,26,62,134,303,634,1394,2872,6206,12676,27068,54994,116423, %T A340567 235706,495722,1001168,2094714,4223020,8798756,17715084,36782246, %U A340567 73980516,153161332,307808464,635675228,1276699336,2630957432,5281304554,10863149303,21797013946 %N A340567 Total number of ascents in all faro permutations of length n. %C A340567 Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. %H A340567 Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, <a href="https://arxiv.org/abs/2010.06270">Pattern statistics in faro words and permutations</a>, arXiv:2010.06270 [math.CO], 2020. See Table 1. %F A340567 G.f.: 2*x*(4*x^2 + x + sqrt(1 - 4*x^2) - 1)/((1 - 2*x)*sqrt(1 - 4*x^2)*(sqrt(1 - 4*x^2) + 1)). %e A340567 For n = 3 there are 3 faro permutations, namely 123, 213, 132. They contain 4 ascents (12, 23, 13 and 13) in total. %o A340567 (PARI) seq(n)={my(t=sqrt(1-4*x^2+O(x^n))); Vec(2*x*(4*x^2 + x + t - 1)/((1 - 2*x)*t*(t + 1)), -(1+n))} \\ _Andrew Howroyd_, Jan 11 2021 %Y A340567 A001405 counts faro permutations of length n. %Y A340567 Cf. A107373 (descents), A340568, A340569. %K A340567 nonn %O A340567 0,4 %A A340567 _Sergey Kirgizov_, Jan 11 2021