cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340567 Total number of ascents in all faro permutations of length n.

This page as a plain text file.
%I A340567 #17 Jan 11 2021 23:16:24
%S A340567 0,0,1,4,11,26,62,134,303,634,1394,2872,6206,12676,27068,54994,116423,
%T A340567 235706,495722,1001168,2094714,4223020,8798756,17715084,36782246,
%U A340567 73980516,153161332,307808464,635675228,1276699336,2630957432,5281304554,10863149303,21797013946
%N A340567 Total number of ascents in all faro permutations of length n.
%C A340567 Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one.
%H A340567 Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, <a href="https://arxiv.org/abs/2010.06270">Pattern statistics in faro words and permutations</a>, arXiv:2010.06270 [math.CO], 2020. See Table 1.
%F A340567 G.f.: 2*x*(4*x^2 + x + sqrt(1 - 4*x^2) - 1)/((1 - 2*x)*sqrt(1 - 4*x^2)*(sqrt(1 - 4*x^2) + 1)).
%e A340567 For n = 3 there are 3 faro permutations, namely 123, 213, 132. They contain 4 ascents (12, 23, 13 and 13) in total.
%o A340567 (PARI) seq(n)={my(t=sqrt(1-4*x^2+O(x^n))); Vec(2*x*(4*x^2 + x + t - 1)/((1 - 2*x)*t*(t + 1)), -(1+n))} \\ _Andrew Howroyd_, Jan 11 2021
%Y A340567 A001405 counts faro permutations of length n.
%Y A340567 Cf. A107373 (descents), A340568, A340569.
%K A340567 nonn
%O A340567 0,4
%A A340567 _Sergey Kirgizov_, Jan 11 2021