This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340576 #38 Dec 22 2024 16:18:45 %S A340576 1,0,6,0,5,4,8,2,9,3,1,6,9,1,1,0,7,2,8,1,7,4,1,2,6,3,6,4,3,0,9,8,7,2, %T A340576 0,3,4,9,3,0,7,7,1,3,0,2,0,4,4,8,7,1,6,3,1,2,7,9,9,4,3,7,2,1,8,1,7,9, %U A340576 4,6,0,8,0,2,4,4,0,6,6,3,7,4,5,9,0,3,1,6,1,4,3,8,7,6,8,5,6,3,3,5,6,5,0,1,5 %N A340576 Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1-1/p^2). %C A340576 The four similar sequences for products of primes mod 6 are these: %C A340576 A175646 for Product_{primes p == 1 (mod 6)} 1/(1-1/p^2), %C A340576 A340576 for Product_{primes p == 5 (mod 6)} 1/(1-1/p^2), %C A340576 A340577 for Product_{primes p == 1 (mod 6)} 1/(1+1/p^2), %C A340576 A340578 for Product_{primes p == 5 (mod 6)} 1/(1+1/p^2). %H A340576 R. J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,5}(2) in section 3.2. %F A340576 g = A143298 = (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4 sqrt(3)); %F A340576 h = A301429; %F A340576 Equals (3*sqrt(3)*h^2)/2. %F A340576 Equals (3/4)*A333240. %F A340576 A340577 = Pi^4/(243*g*h^2); %F A340576 A340578 = (45*g*h^2)/(2*Pi^2). %F A340576 Equals Pi^2/(9*A175646). - _Artur Jasinski_, Jan 11 2021 %F A340576 Equals Sum_{k>=1} 1/A259548(k)^2. - _Amiram Eldar_, Jan 24 2021 %e A340576 1.06054829316911072817412636430987203493077130204487163127994372... %p A340576 a := n -> 3^(2^(-n-2))*((1-3^(-2^(n+1)))/2)^(2^(-n-1)): %p A340576 b := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))): %p A340576 c := n -> a(n)*b(2^(n+1))^(1/2^(n+1)): %p A340576 Digits := 107: evalf((3/4)*mul(c(n), n=0..9)); # _Peter Luschny_, Jan 14 2021 %t A340576 digits = 105; %t A340576 precision = digits + 10; %t A340576 prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}]; %t A340576 Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision] &; %t A340576 Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3]; %t A340576 Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]]; %t A340576 gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s]; %t A340576 pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&; %t A340576 RealDigits[pB, 10, digits][[1]] (* Most of this code is due to _Artur Jasinski_ *) %t A340576 S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); %t A340576 P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; %t A340576 Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]); %t A340576 $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6,5,2], digits]], 10, digits-1][[1]] (* _Vaclav Kotesovec_, Jan 15 2021 *) %Y A340576 Similar constants: A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340577, A340578. %Y A340576 Cf. A259548. %K A340576 nonn,cons %O A340576 1,3 %A A340576 _Jean-François Alcover_, Jan 12 2021