This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340583 #26 Feb 03 2021 23:33:47 %S A340583 1,0,3,1,0,4,1,3,0,7,2,3,4,0,6,2,6,4,7,0,12,4,6,8,7,6,0,8,4,12,8,14,6, %T A340583 12,0,15,7,12,16,14,12,12,8,0,13,8,21,16,28,12,24,8,15,0,18,12,24,28, %U A340583 28,24,24,16,15,13,0,12,14,36,32,49,24,48,16,30,13,18,0,28 %N A340583 Triangle read by rows: T(n,k) = A002865(n-k)*A000203(k), 1 <= k <= n. %C A340583 T(n,k) is the total number of cubic cells added at n-th stage to the right prisms whose bases are the parts of the symmetric representation of sigma(k) in the polycube described in A221529. %C A340583 Partial sums of column k gives the column k of A221529. %e A340583 Triangle begins: %e A340583 1; %e A340583 0, 3; %e A340583 1, 0, 4; %e A340583 1, 3, 0, 7; %e A340583 2, 3, 4, 0, 6; %e A340583 2, 6, 4, 7, 0, 12; %e A340583 4, 6, 8, 7, 6, 0, 8; %e A340583 4, 12, 8, 14, 6, 12, 0, 15; %e A340583 7, 12, 16, 14, 12, 12, 8, 0, 13; %e A340583 8, 21, 16, 28, 12, 24, 8, 15, 0, 18; %e A340583 12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12; %e A340583 14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28; %e A340583 ... %e A340583 For n = 6 the calculation of every term of row 6 is as follows: %e A340583 -------------------------- %e A340583 k A000203 T(6,k) %e A340583 -------------------------- %e A340583 1 1 * 2 = 2 %e A340583 2 3 * 2 = 6 %e A340583 3 4 * 1 = 4 %e A340583 4 7 * 1 = 7 %e A340583 5 6 * 0 = 0 %e A340583 6 12 * 1 = 12 %e A340583 . A002865 %e A340583 -------------------------- %e A340583 The sum of row 6 is 2 + 6 + 4 + 7 + 0 + 12 = 31, equaling A138879(6). %t A340583 A340583[n_, k_] := (PartitionsP[n - k] - PartitionsP[(n - k) - 1])* %t A340583 DivisorSigma[1, k]; %t A340583 Table[A340583[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Robert P. P. McKone_, Jan 25 2021 *) %Y A340583 Row sums give A138879. %Y A340583 Column 1 gives A002865. %Y A340583 Diagonals 1, 3 and 4 give A000203. %Y A340583 Diagonal 2 gives A000004. %Y A340583 Diagonals 5 and 6 give A074400. %Y A340583 Diagonals 7 and 8 give A239050. %Y A340583 Diagonal 9 gives A319527. %Y A340583 Diagonal 10 gives A319528. %Y A340583 Cf. A221529 (partial column sums). %Y A340583 Cf. A340426 (mirror). %Y A340583 Cf. A135010, A221530, A245095, A245099, A339278. %K A340583 nonn,tabl %O A340583 1,3 %A A340583 _Omar E. Pol_, Jan 15 2021