This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340588 #26 Nov 26 2024 15:59:22 %S A340588 1,16,64,81,256,625,729,1024,1296,2401,4096,6561,10000,14641,15625, %T A340588 16384,20736,28561,38416,46656,50625,59049,65536,83521,104976,117649, %U A340588 130321,160000,194481,234256,262144,279841,331776,390625,456976,531441,614656,707281,810000,923521,1000000 %N A340588 Squares of perfect powers. %H A340588 Amiram Eldar, <a href="/A340588/b340588.txt">Table of n, a(n) for n = 1..10000</a> %F A340588 a(n) = A001597(n)^2. %F A340588 a(n+1) = A062965(n) + 1. - _Hugo Pfoertner_, Sep 29 2020 %F A340588 Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2). %F A340588 Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)). %p A340588 q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))<>2): %p A340588 select(q, [i^2$i=1..1000])[]; # _Alois P. Heinz_, Nov 26 2024 %t A340588 Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2] %o A340588 (Python) %o A340588 from sympy import mobius, integer_nthroot %o A340588 def A340588(n): %o A340588 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A340588 kmin, kmax = 1,2 %o A340588 while f(kmax) >= kmax: %o A340588 kmax <<= 1 %o A340588 while True: %o A340588 kmid = kmax+kmin>>1 %o A340588 if f(kmid) < kmid: %o A340588 kmax = kmid %o A340588 else: %o A340588 kmin = kmid %o A340588 if kmax-kmin <= 1: %o A340588 break %o A340588 return kmax**2 # _Chai Wah Wu_, Aug 14 2024 %Y A340588 Cf. A000290, A001597, A062965, A072102, A117453, A131605. %Y A340588 Cf. A153158 (complement within positive squares). %K A340588 nonn %O A340588 1,2 %A A340588 _Terry D. Grant_, Sep 21 2020