cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340589 Number of partitions of n into 4 parts with at least one odd part.

This page as a plain text file.
%I A340589 #5 Jan 12 2021 21:33:30
%S A340589 0,0,0,0,1,1,2,3,4,6,8,11,13,18,20,27,29,39,41,54,55,72,73,94,93,120,
%T A340589 118,150,146,185,179,225,215,270,258,321,304,378,357,441,414,511,479,
%U A340589 588,548,672,626,764,708,864,800,972,897,1089,1004,1215,1116,1350,1240,1495
%N A340589 Number of partitions of n into 4 parts with at least one odd part.
%H A340589 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A340589 a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign((k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k) mod 2)).
%e A340589 a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1].
%e A340589 a(8) = 4; [5,1,1,1], [4,2,1,1], [3,3,1,1], [3,2,2,1], (not [2,2,2,2]).
%t A340589 Table[Sum[Sum[Sum[Sign[Mod[k, 2] + Mod[j, 2] + Mod[i, 2] + Mod[n - i - j - k, 2]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
%Y A340589 Cf. A026810, A340571.
%K A340589 nonn
%O A340589 0,7
%A A340589 _Wesley Ivan Hurt_, Jan 12 2021