This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340591 #18 Jan 26 2021 21:01:00 %S A340591 1,1,1,1,1,1,1,2,2,1,1,6,16,5,1,1,24,288,192,14,1,1,120,9216,24444, %T A340591 2816,42,1,1,720,460800,7303104,2738592,46592,132,1,1,5040,33177600, %U A340591 4234233600,8204167296,361998432,835584,429,1,1,40320,3251404800,4223111040000,59027412643200,11332298092032,53414223552,15876096,1430,1 %N A340591 Number A(n,k) of n*(k+1)-step k-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A340591 Alois P. Heinz, <a href="/A340591/b340591.txt">Antidiagonals n = 0..24, flattened</a> %e A340591 Square array A(n,k) begins: %e A340591 1, 1, 1, 1, 1, 1, ... %e A340591 1, 1, 2, 6, 24, 120, ... %e A340591 1, 2, 16, 288, 9216, 460800, ... %e A340591 1, 5, 192, 24444, 7303104, 4234233600, ... %e A340591 1, 14, 2816, 2738592, 8204167296, 59027412643200, ... %e A340591 1, 42, 46592, 361998432, 11332298092032, 1052109889288796160, ... %p A340591 b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add( %p A340591 `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+ %p A340591 `if`(add(i, i=l)+k<n, b(n-1, map(x-> x+1, l)), 0))(nops(l))) %p A340591 end: %p A340591 A:= (n, k)-> b(k*n+n, [0$k]): %p A340591 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A340591 b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[ %t A340591 If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}]+ %t A340591 If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]]; %t A340591 A[n_, k_] := b[k*n + n, Table[0, {k}]]; %t A340591 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Jan 26 2021, after _Alois P. Heinz_ *) %Y A340591 Columns k=0-3 give: A000012, A000108, A006335, A340540. %Y A340591 Rows n=0-2 give: A000012, A000142, |A055546|. %Y A340591 Main diagonal gives A340590. %Y A340591 Cf. A335570. %K A340591 nonn,tabl,walk %O A340591 0,8 %A A340591 _Alois P. Heinz_, Jan 12 2021