This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340601 #29 May 04 2024 05:09:29 %S A340601 1,1,0,3,1,5,3,11,8,18,16,34,33,57,59,98,105,159,179,262,297,414,478, %T A340601 653,761,1008,1184,1544,1818,2327,2750,3480,4113,5137,6078,7527,8899, %U A340601 10917,12897,15715,18538,22431,26430,31805,37403,44766,52556,62620,73379 %N A340601 Number of integer partitions of n of even rank. %C A340601 The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0. %H A340601 Alois P. Heinz, <a href="/A340601/b340601.txt">Table of n, a(n) for n = 0..10000</a> %H A340601 Freeman J. Dyson, <a href="https://doi.org/10.1016/S0021-9800(69)80006-2">A new symmetry of partitions</a>, Journal of Combinatorial Theory 7.1 (1969): 56-61. %H A340601 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %F A340601 G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - _John Tyler Rascoe_, Apr 15 2024 %F A340601 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - _Vaclav Kotesovec_, Apr 17 2024 %e A340601 The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot): %e A340601 (1) . (3) (22) (5) (42) (7) (44) (9) %e A340601 (21) (41) (321) (43) (62) (63) %e A340601 (111) (311) (2211) (61) (332) (81) %e A340601 (2111) (322) (521) (333) %e A340601 (11111) (331) (2222) (522) %e A340601 (511) (4211) (531) %e A340601 (2221) (32111) (711) %e A340601 (4111) (221111) (4221) %e A340601 (31111) (4311) %e A340601 (211111) (6111) %e A340601 (1111111) (32211) %e A340601 (33111) %e A340601 (51111) %e A340601 (222111) %e A340601 (411111) %e A340601 (3111111) %e A340601 (21111111) %e A340601 (111111111) %p A340601 b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r), %p A340601 `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1- %p A340601 `if`(r<0, irem(i, 2), r)))) %p A340601 end: %p A340601 a:= n-> b(n$2, -1): %p A340601 seq(a(n), n=0..55); # _Alois P. Heinz_, Jan 22 2021 %t A340601 Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}] %t A340601 (* Second program: *) %t A340601 b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]]; %t A340601 a[n_] := b[n, n, -1]; %t A340601 a /@ Range[0, 55] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %o A340601 (PARI) %o A340601 p_q(k) = {prod(j=1, k, 1-q^j); } %o A340601 GB_q(N, M)= {if(N>=0 && M>=0, p_q(N+M)/(p_q(M)*p_q(N)), 0 ); } %o A340601 A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)} %o A340601 A_q(50) \\ _John Tyler Rascoe_, Apr 15 2024 %Y A340601 Note: Heinz numbers are given in parentheses below. %Y A340601 The positive case is A101708 (A340605). %Y A340601 The Heinz numbers of these partitions are A340602. %Y A340601 The odd version is A340692 (A340603). %Y A340601 - Rank - %Y A340601 A047993 counts partitions of rank 0 (A106529). %Y A340601 A072233 counts partitions by sum and length. %Y A340601 A101198 counts partitions of rank 1 (A325233). %Y A340601 A101707 counts partitions of odd positive rank (A340604). %Y A340601 A101708 counts partitions of even positive rank (A340605). %Y A340601 A257541 gives the rank of the partition with Heinz number n. %Y A340601 A340653 counts factorizations of rank 0. %Y A340601 - Even - %Y A340601 A024430 counts set partitions of even length. %Y A340601 A027187 counts partitions of even length (A028260). %Y A340601 A027187 (also) counts partitions of even maximum (A244990). %Y A340601 A034008 counts compositions of even length. %Y A340601 A035363 counts partitions into even parts (A066207). %Y A340601 A052841 counts ordered set partitions of even length. %Y A340601 A058696 counts partitions of even numbers (A300061). %Y A340601 A067661 counts strict partitions of even length (A030229). %Y A340601 A236913 counts even-length partitions of even numbers (A340784). %Y A340601 A339846 counts factorizations of even length. %Y A340601 Cf. A000041, A006141, A039900, A064174, A067538, A117409, A200750, A324516. %K A340601 nonn %O A340601 0,4 %A A340601 _Gus Wiseman_, Jan 21 2021