cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340602 Heinz numbers of integer partitions of even rank.

This page as a plain text file.
%I A340602 #11 Apr 08 2021 03:24:33
%S A340602 1,2,5,6,8,9,11,14,17,20,21,23,24,26,30,31,32,35,36,38,39,41,44,45,47,
%T A340602 49,50,54,56,57,58,59,65,66,67,68,73,74,75,80,81,83,84,86,87,91,92,95,
%U A340602 96,97,99,102,103,104,106,109,110,111,120,122,124,125,126,127
%N A340602 Heinz numbers of integer partitions of even rank.
%C A340602 The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is 0.
%C A340602 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%H A340602 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a>
%F A340602 Either n = 1 or A061395(n) - A001222(n) is even.
%e A340602 The sequence of partitions with their Heinz numbers begins:
%e A340602      1: ()           31: (11)           58: (10,1)
%e A340602      2: (1)          32: (1,1,1,1,1)    59: (17)
%e A340602      5: (3)          35: (4,3)          65: (6,3)
%e A340602      6: (2,1)        36: (2,2,1,1)      66: (5,2,1)
%e A340602      8: (1,1,1)      38: (8,1)          67: (19)
%e A340602      9: (2,2)        39: (6,2)          68: (7,1,1)
%e A340602     11: (5)          41: (13)           73: (21)
%e A340602     14: (4,1)        44: (5,1,1)        74: (12,1)
%e A340602     17: (7)          45: (3,2,2)        75: (3,3,2)
%e A340602     20: (3,1,1)      47: (15)           80: (3,1,1,1,1)
%e A340602     21: (4,2)        49: (4,4)          81: (2,2,2,2)
%e A340602     23: (9)          50: (3,3,1)        83: (23)
%e A340602     24: (2,1,1,1)    54: (2,2,2,1)      84: (4,2,1,1)
%e A340602     26: (6,1)        56: (4,1,1,1)      86: (14,1)
%e A340602     30: (3,2,1)      57: (8,2)          87: (10,2)
%t A340602 Select[Range[100],EvenQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]
%Y A340602 Taking only length gives A001222.
%Y A340602 Taking only maximum part gives A061395.
%Y A340602 These partitions are counted by A340601.
%Y A340602 The complement is A340603.
%Y A340602 The case of positive rank is A340605.
%Y A340602 - Rank -
%Y A340602 A047993 counts partitions of rank 0 (A106529).
%Y A340602 A101198 counts partitions of rank 1 (A325233).
%Y A340602 A101707 counts partitions of odd positive rank (A340604).
%Y A340602 A101708 counts partitions of even positive rank (A340605).
%Y A340602 A257541 gives the rank of the partition with Heinz number n.
%Y A340602 A324516 counts partitions with rank = maximum minus minimum part (A324515).
%Y A340602 A340653 counts factorizations of rank 0.
%Y A340602 A340692 counts partitions of odd rank (A340603).
%Y A340602 - Even -
%Y A340602 A024430 counts set partitions of even length.
%Y A340602 A027187 counts partitions of even length (A028260).
%Y A340602 A027187 (also) counts partitions of even maximum (A244990).
%Y A340602 A034008 counts compositions of even length.
%Y A340602 A035363 counts partitions into even parts (A066207).
%Y A340602 A052841 counts ordered set partitions of even length.
%Y A340602 A058696 counts partitions of even numbers (A300061).
%Y A340602 A067661 counts strict partitions of even length (A030229).
%Y A340602 A236913 counts even-length partitions of even numbers (A340784).
%Y A340602 A339846 counts factorizations of even length.
%Y A340602 Cf. A000041, A006141, A056239, A072233, A112798, A168659, A325134, A326836, A326845, A340386, A340387.
%K A340602 nonn
%O A340602 1,2
%A A340602 _Gus Wiseman_, Jan 21 2021