cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340603 Heinz numbers of integer partitions of odd rank.

This page as a plain text file.
%I A340603 #12 Jan 22 2021 20:28:51
%S A340603 3,4,7,10,12,13,15,16,18,19,22,25,27,28,29,33,34,37,40,42,43,46,48,51,
%T A340603 52,53,55,60,61,62,63,64,69,70,71,72,76,77,78,79,82,85,88,89,90,93,94,
%U A340603 98,100,101,105,107,108,112,113,114,115,116,117,118,119,121
%N A340603 Heinz numbers of integer partitions of odd rank.
%C A340603 The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
%C A340603 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%H A340603 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a>
%F A340603 A061395(a(n)) - A001222(a(n)) is odd.
%e A340603 The sequence of partitions with their Heinz numbers begins:
%e A340603       3: (2)           33: (5,2)           63: (4,2,2)
%e A340603       4: (1,1)         34: (7,1)           64: (1,1,1,1,1,1)
%e A340603       7: (4)           37: (12)            69: (9,2)
%e A340603      10: (3,1)         40: (3,1,1,1)       70: (4,3,1)
%e A340603      12: (2,1,1)       42: (4,2,1)         71: (20)
%e A340603      13: (6)           43: (14)            72: (2,2,1,1,1)
%e A340603      15: (3,2)         46: (9,1)           76: (8,1,1)
%e A340603      16: (1,1,1,1)     48: (2,1,1,1,1)     77: (5,4)
%e A340603      18: (2,2,1)       51: (7,2)           78: (6,2,1)
%e A340603      19: (8)           52: (6,1,1)         79: (22)
%e A340603      22: (5,1)         53: (16)            82: (13,1)
%e A340603      25: (3,3)         55: (5,3)           85: (7,3)
%e A340603      27: (2,2,2)       60: (3,2,1,1)       88: (5,1,1,1)
%e A340603      28: (4,1,1)       61: (18)            89: (24)
%e A340603      29: (10)          62: (11,1)          90: (3,2,2,1)
%t A340603 Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]
%Y A340603 Note: Heinz numbers are given in parentheses below.
%Y A340603 These partitions are counted by A340692.
%Y A340603 The complement is A340602, counted by A340601.
%Y A340603 The case of positive rank is A340604.
%Y A340603 - Rank -
%Y A340603 A001222 gives number of prime indices.
%Y A340603 A047993 counts partitions of rank 0 (A106529).
%Y A340603 A061395 gives maximum prime index.
%Y A340603 A101198 counts partitions of rank 1 (A325233).
%Y A340603 A101707 counts partitions of odd positive rank (A340604).
%Y A340603 A101708 counts partitions of even positive rank (A340605).
%Y A340603 A257541 gives the rank of the partition with Heinz number n.
%Y A340603 A340653 counts balanced factorizations.
%Y A340603 - Odd -
%Y A340603 A000009 counts partitions into odd parts (A066208).
%Y A340603 A027193 counts partitions of odd length (A026424).
%Y A340603 A027193 (also) counts partitions of odd maximum (A244991).
%Y A340603 A058695 counts partitions of odd numbers (A300063).
%Y A340603 A067659 counts strict partitions of odd length (A030059).
%Y A340603 A160786 counts odd-length partitions of odd numbers (A300272).
%Y A340603 A339890 counts factorizations of odd length.
%Y A340603 A340102 counts odd-length factorizations into odd factors.
%Y A340603 A340385 counts partitions of odd length and maximum (A340386).
%Y A340603 Cf. A001221, A006141, A056239, A112798, A168659, A200750, A316413, A325134, A340608, A340609, A340610.
%K A340603 nonn
%O A340603 1,1
%A A340603 _Gus Wiseman_, Jan 21 2021