This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340604 #13 Jan 22 2021 20:29:02 %S A340604 3,7,10,13,15,19,22,25,28,29,33,34,37,42,43,46,51,52,53,55,61,62,63, %T A340604 69,70,71,76,77,78,79,82,85,88,89,93,94,98,101,105,107,113,114,115, %U A340604 116,117,118,119,121,123,130,131,132,134,136,139,141,146,147,148,151 %N A340604 Heinz numbers of integer partitions of odd positive rank. %C A340604 The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0. %C A340604 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %H A340604 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %F A340604 A061395(a(n)) - A001222(a(n)) is odd and positive. %F A340604 A340604 \/ A340605 = A340787. %e A340604 The sequence of partitions with their Heinz numbers begins: %e A340604 3: (2) 46: (9,1) 82: (13,1) %e A340604 7: (4) 51: (7,2) 85: (7,3) %e A340604 10: (3,1) 52: (6,1,1) 88: (5,1,1,1) %e A340604 13: (6) 53: (16) 89: (24) %e A340604 15: (3,2) 55: (5,3) 93: (11,2) %e A340604 19: (8) 61: (18) 94: (15,1) %e A340604 22: (5,1) 62: (11,1) 98: (4,4,1) %e A340604 25: (3,3) 63: (4,2,2) 101: (26) %e A340604 28: (4,1,1) 69: (9,2) 105: (4,3,2) %e A340604 29: (10) 70: (4,3,1) 107: (28) %e A340604 33: (5,2) 71: (20) 113: (30) %e A340604 34: (7,1) 76: (8,1,1) 114: (8,2,1) %e A340604 37: (12) 77: (5,4) 115: (9,3) %e A340604 42: (4,2,1) 78: (6,2,1) 116: (10,1,1) %e A340604 43: (14) 79: (22) 117: (6,2,2) %t A340604 rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n]; %t A340604 Select[Range[100],OddQ[rk[#]]&&rk[#]>0&] %Y A340604 Note: Heinz numbers are given in parentheses below. %Y A340604 These partitions are counted by A101707. %Y A340604 Allowing negative ranks gives A340692, counted by A340603. %Y A340604 The even version is A340605, counted by A101708. %Y A340604 The not necessarily odd case is A340787, counted by A064173. %Y A340604 A001222 gives number of prime indices. %Y A340604 A061395 gives maximum prime index. %Y A340604 - Rank - %Y A340604 A047993 counts partitions of rank 0 (A106529). %Y A340604 A064173 counts partitions of negative rank (A340788). %Y A340604 A064174 counts partitions of nonnegative rank (A324562). %Y A340604 A064174 (also) counts partitions of nonpositive rank (A324521). %Y A340604 A101198 counts partitions of rank 1 (A325233). %Y A340604 A257541 gives the rank of the partition with Heinz number n. %Y A340604 A340653 counts balanced factorizations. %Y A340604 - Odd - %Y A340604 A000009 counts partitions into odd parts (A066208). %Y A340604 A027193 counts partitions of odd length (A026424). %Y A340604 A027193 (also) counts partitions of odd maximum (A244991). %Y A340604 A058695 counts partitions of odd numbers (A300063). %Y A340604 A067659 counts strict partitions of odd length (A030059). %Y A340604 A160786 counts odd-length partitions of odd numbers (A300272). %Y A340604 A339890 counts factorizations of odd length. %Y A340604 A340101 counts factorizations into odd factors. %Y A340604 A340102 counts odd-length factorizations into odd factors. %Y A340604 A340385 counts partitions of odd length and maximum (A340386). %Y A340604 Cf. A001221, A006141, A056239, A112798, A168659, A200750, A316413, A325134, A340601, A340602, A340608, A340609, A340610. %K A340604 nonn %O A340604 1,1 %A A340604 _Gus Wiseman_, Jan 21 2021