This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340605 #12 Apr 09 2021 09:41:01 %S A340605 5,11,14,17,21,23,26,31,35,38,39,41,44,47,49,57,58,59,65,66,67,68,73, %T A340605 74,83,86,87,91,92,95,97,99,102,103,104,106,109,110,111,122,124,127, %U A340605 129,133,137,138,142,143,145,149,152,153,154,156,157,158,159,164,165 %N A340605 Heinz numbers of integer partitions of even positive rank. %C A340605 The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0. %C A340605 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %H A340605 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %F A340605 A061395(a(n)) - A001222(a(n)) is even and positive. %F A340605 A340604 \/ A340605 = A340787. %e A340605 The sequence of partitions with their Heinz numbers begins: %e A340605 5: (3) 57: (8,2) 97: (25) %e A340605 11: (5) 58: (10,1) 99: (5,2,2) %e A340605 14: (4,1) 59: (17) 102: (7,2,1) %e A340605 17: (7) 65: (6,3) 103: (27) %e A340605 21: (4,2) 66: (5,2,1) 104: (6,1,1,1) %e A340605 23: (9) 67: (19) 106: (16,1) %e A340605 26: (6,1) 68: (7,1,1) 109: (29) %e A340605 31: (11) 73: (21) 110: (5,3,1) %e A340605 35: (4,3) 74: (12,1) 111: (12,2) %e A340605 38: (8,1) 83: (23) 122: (18,1) %e A340605 39: (6,2) 86: (14,1) 124: (11,1,1) %e A340605 41: (13) 87: (10,2) 127: (31) %e A340605 44: (5,1,1) 91: (6,4) 129: (14,2) %e A340605 47: (15) 92: (9,1,1) 133: (8,4) %e A340605 49: (4,4) 95: (8,3) 137: (33) %t A340605 rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n]; %t A340605 Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&] %Y A340605 Note: Heinz numbers are given in parentheses below. %Y A340605 Allowing any positive rank gives A064173 (A340787). %Y A340605 The odd version is counted by A101707 (A340604). %Y A340605 These partitions are counted by A101708. %Y A340605 The not necessarily positive case is counted by A340601 (A340602). %Y A340605 A001222 counts prime indices. %Y A340605 A061395 gives maximum prime index. %Y A340605 A072233 counts partitions by sum and length. %Y A340605 - Rank - %Y A340605 A047993 counts partitions of rank 0 (A106529). %Y A340605 A064173 counts partitions of negative rank (A340788). %Y A340605 A064174 counts partitions of nonnegative rank (A324562). %Y A340605 A064174 (also) counts partitions of nonpositive rank (A324521). %Y A340605 A101198 counts partitions of rank 1 (A325233). %Y A340605 A257541 gives the rank of the partition with Heinz number n. %Y A340605 A340692 counts partitions of odd rank (A340603). %Y A340605 - Even - %Y A340605 A027187 counts partitions of even length (A028260). %Y A340605 A027187 (also) counts partitions of even maximum (A244990). %Y A340605 A035363 counts partitions into even parts (A066207). %Y A340605 A058696 counts partitions of even numbers (A300061). %Y A340605 A067661 counts strict partitions of even length (A030229). %Y A340605 A339846 counts factorizations of even length. %Y A340605 Cf. A006141, A024430, A056239, A112798, A340387, A340598, A340600, A340608, A340609, A340610, A340653. %K A340605 nonn %O A340605 1,1 %A A340605 _Gus Wiseman_, Jan 21 2021