This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340606 #10 Jan 27 2021 22:37:35 %S A340606 1,2,4,6,8,9,16,20,24,32,36,50,54,56,64,81,84,96,125,126,128,144,160, %T A340606 176,189,196,216,240,256,294,324,360,384,400,416,441,486,512,540,576, %U A340606 600,624,686,729,810,864,896,900,936,968,1000,1024,1029,1040,1088,1215 %N A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222). %C A340606 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A340606 The sequence of terms together with their prime indices begins: %e A340606 1: {} %e A340606 2: {1} %e A340606 4: {1,1} %e A340606 6: {1,2} %e A340606 8: {1,1,1} %e A340606 9: {2,2} %e A340606 16: {1,1,1,1} %e A340606 20: {1,1,3} %e A340606 24: {1,1,1,2} %e A340606 32: {1,1,1,1,1} %e A340606 36: {1,1,2,2} %e A340606 50: {1,3,3} %e A340606 54: {1,2,2,2} %e A340606 56: {1,1,1,4} %e A340606 64: {1,1,1,1,1,1} %e A340606 81: {2,2,2,2} %e A340606 84: {1,1,2,4} %e A340606 96: {1,1,1,1,1,2} %t A340606 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A340606 Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&] %Y A340606 Note: Heinz numbers are given in parentheses below. %Y A340606 The reciprocal version is A143773 (A316428). %Y A340606 These partitions are counted by A340693. %Y A340606 A120383 lists numbers divisible by all of their prime indices. %Y A340606 A324850 lists numbers divisible by the product of their prime indices. %Y A340606 A003963 multiplies together the prime indices of n. %Y A340606 A018818 counts partitions of n into divisors of n (A326841). %Y A340606 A047993 counts balanced partitions (A106529). %Y A340606 A067538 counts partitions of n whose length divides n (A316413). %Y A340606 A056239 adds up the prime indices of n. %Y A340606 A061395 selects the maximum prime index. %Y A340606 A067538 counts partitions of n whose maximum divides n (A326836). %Y A340606 A072233 counts partitions by sum and length. %Y A340606 A112798 lists the prime indices of each positive integer. %Y A340606 A168659 = partitions whose length is divisible by their maximum (A340609). %Y A340606 A168659 = partitions whose maximum is divisible by their length (A340610). %Y A340606 A289509 lists numbers with relatively prime prime indices. %Y A340606 A326842 = partitions of n whose length and parts all divide n (A326847). %Y A340606 A326843 = partitions of n whose length and maximum both divide n (A326837). %Y A340606 A340852 have a factorization with factors dividing length. %Y A340606 Cf. A000720, A001222, A006141, A067539, A200750, A298423, A324925, A326149/A326155, A340608, A340827. %K A340606 nonn %O A340606 1,2 %A A340606 _Gus Wiseman_, Jan 24 2021