This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340607 #10 Dec 13 2021 16:14:38 %S A340607 0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1,0,2,1,1,1,1,0,1,0, %T A340607 1,1,1,0,1,1,1,1,1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,0,1,2,1,0,2,0,1,1,1,1, %U A340607 1,1,1,2,1,0,2,1,1,1,1,2,2,0,1,3,1,0,1,1,1,2,1,1,1,0,1,0,1,1,2,2,1,1,1,1,2,0,1,4 %N A340607 Number of factorizations of n into an odd number of factors > 1, the greatest of which is odd. %H A340607 Antti Karttunen, <a href="/A340607/b340607.txt">Table of n, a(n) for n = 1..20000</a> %e A340607 The a(n) factorizations for n = 27, 84, 108, 180, 252, 360, 432: %e A340607 27 2*6*7 2*6*9 4*5*9 4*7*9 5*8*9 6*8*9 %e A340607 3*3*3 3*4*7 3*4*9 2*2*45 6*6*7 2*4*45 2*8*27 %e A340607 2*2*21 2*2*27 2*6*15 2*2*63 3*8*15 4*4*27 %e A340607 2*2*3*3*3 3*4*15 2*6*21 4*6*15 2*2*2*6*9 %e A340607 2*2*3*3*5 3*4*21 2*12*15 2*2*3*4*9 %e A340607 2*2*3*3*7 2*2*2*5*9 2*2*2*2*27 %e A340607 2*3*3*4*5 2*2*2*2*3*3*3 %e A340607 2*2*2*3*15 %t A340607 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340607 Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Max@@#]&]],{n,100}] %o A340607 (PARI) A340607(n, m=n, k=0, grodd=0) = if(1==n, k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(grodd||(d%2)), s += A340607(n/d, d, 1-k, bitor(1,grodd)))); (s)); \\ _Antti Karttunen_, Dec 13 2021 %Y A340607 Note: Heinz numbers are given in parentheses below. %Y A340607 The case of odd length only is A339890. %Y A340607 The case of all odd factors is A340102. %Y A340607 The version for partitions is A340385. %Y A340607 The version for prime indices is A340386. %Y A340607 The case of odd maximum only is A340831. %Y A340607 A000009 counts partitions into odd parts (A066208). %Y A340607 A001055 counts factorizations, with strict case A045778. %Y A340607 A027193 counts partitions of odd length/maximum (A026424/A244991). %Y A340607 A058695 counts partitions of odd numbers (A300063). %Y A340607 A078408 counts odd-length partitions into odd numbers (A300272). %Y A340607 A316439 counts factorizations by sum and length. %Y A340607 A340101 counts factorizations (into odd factors = of odd numbers). %Y A340607 A340832 counts factorizations whose least part is odd. %Y A340607 A340854/A340855 lack/have a factorization with odd minimum. %Y A340607 Cf. A000700, A024429, A026804, A028260, A061395, A112798, A160786, A236914, A324522, A326845, A340608, A340788. %K A340607 nonn %O A340607 1,27 %A A340607 _Gus Wiseman_, Jan 25 2021 %E A340607 Data section extended up to 108 terms by _Antti Karttunen_, Dec 13 2021