This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340608 #11 Feb 07 2021 06:25:34 %S A340608 2,3,4,5,7,8,10,11,12,13,15,16,17,18,19,22,23,25,27,28,29,31,32,33,34, %T A340608 37,40,41,42,43,44,46,47,48,51,53,55,59,60,61,62,63,64,66,67,68,69,70, %U A340608 71,72,73,76,77,79,80,82,83,85,88,89,90,93,94,97,98,99 %N A340608 The number of prime factors of n (A001222) is relatively prime to the maximum prime index of n (A061395). %C A340608 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A340608 Amiram Eldar, <a href="/A340608/b340608.txt">Table of n, a(n) for n = 1..10000</a> %e A340608 The sequence of terms together with their prime indices begins: %e A340608 2: {1} 22: {1,5} 44: {1,1,5} %e A340608 3: {2} 23: {9} 46: {1,9} %e A340608 4: {1,1} 25: {3,3} 47: {15} %e A340608 5: {3} 27: {2,2,2} 48: {1,1,1,1,2} %e A340608 7: {4} 28: {1,1,4} 51: {2,7} %e A340608 8: {1,1,1} 29: {10} 53: {16} %e A340608 10: {1,3} 31: {11} 55: {3,5} %e A340608 11: {5} 32: {1,1,1,1,1} 59: {17} %e A340608 12: {1,1,2} 33: {2,5} 60: {1,1,2,3} %e A340608 13: {6} 34: {1,7} 61: {18} %e A340608 15: {2,3} 37: {12} 62: {1,11} %e A340608 16: {1,1,1,1} 40: {1,1,1,3} 63: {2,2,4} %e A340608 17: {7} 41: {13} 64: {1,1,1,1,1,1} %e A340608 18: {1,2,2} 42: {1,2,4} 66: {1,2,5} %e A340608 19: {8} 43: {14} 67: {19} %t A340608 Select[Range[100],GCD[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==1&] %Y A340608 Note: Heinz numbers are given in parentheses below. %Y A340608 These are the Heinz numbers of the partitions counted by A200750. %Y A340608 The case of equality is A047993 (A106529). %Y A340608 The divisible instead of coprime version is A168659 (A340609). %Y A340608 The dividing instead of coprime version is A168659 (A340610), with strict case A340828 (A340856). %Y A340608 A001222 counts prime factors. %Y A340608 A006141 counts partitions whose length equals their minimum (A324522). %Y A340608 A051424 counts singleton or pairwise coprime partitions (A302569). %Y A340608 A056239 adds up prime indices. %Y A340608 A061395 selects the maximum prime index. %Y A340608 A067538 counts partitions whose length divides their sum (A316413). %Y A340608 A067538 counts partitions whose maximum divides their sum (A326836). %Y A340608 A112798 lists the prime indices of each positive integer. %Y A340608 A259936 counts singleton or pairwise coprime factorizations. %Y A340608 A325134 = A001222 + A061395. %Y A340608 A326845 = A056239 * A061395. %Y A340608 A326849 counts partitions whose sum divides length times maximum (A326848). %Y A340608 A327516 counts pairwise coprime partitions (A302696). %Y A340608 Cf. A003114, A039900, A096401, A244990/A244991, A340606, A340653, A340691, A340787/A340788. %K A340608 nonn %O A340608 1,1 %A A340608 _Gus Wiseman_, Jan 27 2021