cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395).

This page as a plain text file.
%I A340609 #11 Feb 09 2021 02:45:50
%S A340609 2,4,6,8,9,16,20,24,30,32,36,45,50,54,56,64,75,81,84,96,125,126,128,
%T A340609 140,144,160,176,189,196,210,216,240,256,264,294,315,324,350,360,384,
%U A340609 396,400,416,440,441,486,490,512,525,540,576,594,600,616,624,660,686
%N A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395).
%C A340609 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A340609 If n is a term, then so is n^k for k > 1. - _Robert Israel_, Feb 08 2021
%H A340609 Robert Israel, <a href="/A340609/b340609.txt">Table of n, a(n) for n = 1..10000</a>
%F A340609 A061395(a(n)) divides A001222(a(n)).
%e A340609 The sequence of terms together with their prime indices begins:
%e A340609       2: {1}             64: {1,1,1,1,1,1}      216: {1,1,1,2,2,2}
%e A340609       4: {1,1}           75: {2,3,3}            240: {1,1,1,1,2,3}
%e A340609       6: {1,2}           81: {2,2,2,2}          256: {1,1,1,1,1,1,1,1}
%e A340609       8: {1,1,1}         84: {1,1,2,4}          264: {1,1,1,2,5}
%e A340609       9: {2,2}           96: {1,1,1,1,1,2}      294: {1,2,4,4}
%e A340609      16: {1,1,1,1}      125: {3,3,3}            315: {2,2,3,4}
%e A340609      20: {1,1,3}        126: {1,2,2,4}          324: {1,1,2,2,2,2}
%e A340609      24: {1,1,1,2}      128: {1,1,1,1,1,1,1}    350: {1,3,3,4}
%e A340609      30: {1,2,3}        140: {1,1,3,4}          360: {1,1,1,2,2,3}
%e A340609      32: {1,1,1,1,1}    144: {1,1,1,1,2,2}      384: {1,1,1,1,1,1,1,2}
%e A340609      36: {1,1,2,2}      160: {1,1,1,1,1,3}      396: {1,1,2,2,5}
%e A340609      45: {2,2,3}        176: {1,1,1,1,5}        400: {1,1,1,1,3,3}
%e A340609      50: {1,3,3}        189: {2,2,2,4}          416: {1,1,1,1,1,6}
%e A340609      54: {1,2,2,2}      196: {1,1,4,4}          440: {1,1,1,3,5}
%e A340609      56: {1,1,1,4}      210: {1,2,3,4}          441: {2,2,4,4}
%p A340609 filter:= proc(n) local F,m,g,t;
%p A340609   F:= ifactors(n)[2];
%p A340609   m:= add(t[2],t=F);
%p A340609   g:= numtheory:-pi(max(seq(t[1],t=F)));
%p A340609   m mod g = 0;
%p A340609 end proc:
%p A340609 seelect(filter, [$2..1000]); # _Robert Israel_, Feb 08 2021
%t A340609 Select[Range[2,100],Divisible[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]&]
%Y A340609 Note: Heinz numbers are given in parentheses below.
%Y A340609 The case of equality is A047993 (A106529).
%Y A340609 These are the Heinz numbers of certain partitions counted by A168659.
%Y A340609 The reciprocal version is A340610, with strict case A340828 (A340856).
%Y A340609 If all parts (not just the greatest) are divisors we get A340693 (A340606).
%Y A340609 A001222 counts prime factors.
%Y A340609 A006141 counts partitions whose length equals their minimum (A324522).
%Y A340609 A056239 adds up prime indices.
%Y A340609 A061395 selects the maximum prime index.
%Y A340609 A067538 counts partitions whose length divides their sum (A316413).
%Y A340609 A067538 counts partitions whose maximum divides their sum (A326836).
%Y A340609 A112798 lists the prime indices of each positive integer.
%Y A340609 A200750 counts partitions with length coprime to maximum (A340608).
%Y A340609 A325134 = A001222 + A061395.
%Y A340609 A326845 = A056239 * A061395.
%Y A340609 Cf. A039900, A064174, A143773, A244990/A244991, A326837, A326849 (A326848), A340653, A340787/A340788.
%K A340609 nonn
%O A340609 1,1
%A A340609 _Gus Wiseman_, Jan 27 2021