This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340609 #11 Feb 09 2021 02:45:50 %S A340609 2,4,6,8,9,16,20,24,30,32,36,45,50,54,56,64,75,81,84,96,125,126,128, %T A340609 140,144,160,176,189,196,210,216,240,256,264,294,315,324,350,360,384, %U A340609 396,400,416,440,441,486,490,512,525,540,576,594,600,616,624,660,686 %N A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395). %C A340609 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A340609 If n is a term, then so is n^k for k > 1. - _Robert Israel_, Feb 08 2021 %H A340609 Robert Israel, <a href="/A340609/b340609.txt">Table of n, a(n) for n = 1..10000</a> %F A340609 A061395(a(n)) divides A001222(a(n)). %e A340609 The sequence of terms together with their prime indices begins: %e A340609 2: {1} 64: {1,1,1,1,1,1} 216: {1,1,1,2,2,2} %e A340609 4: {1,1} 75: {2,3,3} 240: {1,1,1,1,2,3} %e A340609 6: {1,2} 81: {2,2,2,2} 256: {1,1,1,1,1,1,1,1} %e A340609 8: {1,1,1} 84: {1,1,2,4} 264: {1,1,1,2,5} %e A340609 9: {2,2} 96: {1,1,1,1,1,2} 294: {1,2,4,4} %e A340609 16: {1,1,1,1} 125: {3,3,3} 315: {2,2,3,4} %e A340609 20: {1,1,3} 126: {1,2,2,4} 324: {1,1,2,2,2,2} %e A340609 24: {1,1,1,2} 128: {1,1,1,1,1,1,1} 350: {1,3,3,4} %e A340609 30: {1,2,3} 140: {1,1,3,4} 360: {1,1,1,2,2,3} %e A340609 32: {1,1,1,1,1} 144: {1,1,1,1,2,2} 384: {1,1,1,1,1,1,1,2} %e A340609 36: {1,1,2,2} 160: {1,1,1,1,1,3} 396: {1,1,2,2,5} %e A340609 45: {2,2,3} 176: {1,1,1,1,5} 400: {1,1,1,1,3,3} %e A340609 50: {1,3,3} 189: {2,2,2,4} 416: {1,1,1,1,1,6} %e A340609 54: {1,2,2,2} 196: {1,1,4,4} 440: {1,1,1,3,5} %e A340609 56: {1,1,1,4} 210: {1,2,3,4} 441: {2,2,4,4} %p A340609 filter:= proc(n) local F,m,g,t; %p A340609 F:= ifactors(n)[2]; %p A340609 m:= add(t[2],t=F); %p A340609 g:= numtheory:-pi(max(seq(t[1],t=F))); %p A340609 m mod g = 0; %p A340609 end proc: %p A340609 seelect(filter, [$2..1000]); # _Robert Israel_, Feb 08 2021 %t A340609 Select[Range[2,100],Divisible[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]&] %Y A340609 Note: Heinz numbers are given in parentheses below. %Y A340609 The case of equality is A047993 (A106529). %Y A340609 These are the Heinz numbers of certain partitions counted by A168659. %Y A340609 The reciprocal version is A340610, with strict case A340828 (A340856). %Y A340609 If all parts (not just the greatest) are divisors we get A340693 (A340606). %Y A340609 A001222 counts prime factors. %Y A340609 A006141 counts partitions whose length equals their minimum (A324522). %Y A340609 A056239 adds up prime indices. %Y A340609 A061395 selects the maximum prime index. %Y A340609 A067538 counts partitions whose length divides their sum (A316413). %Y A340609 A067538 counts partitions whose maximum divides their sum (A326836). %Y A340609 A112798 lists the prime indices of each positive integer. %Y A340609 A200750 counts partitions with length coprime to maximum (A340608). %Y A340609 A325134 = A001222 + A061395. %Y A340609 A326845 = A056239 * A061395. %Y A340609 Cf. A039900, A064174, A143773, A244990/A244991, A326837, A326849 (A326848), A340653, A340787/A340788. %K A340609 nonn %O A340609 1,1 %A A340609 _Gus Wiseman_, Jan 27 2021