This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340610 #10 Feb 09 2021 02:45:59 %S A340610 2,3,5,6,7,9,11,13,14,17,19,20,21,23,26,29,30,31,35,37,38,39,41,43,45, %T A340610 47,49,50,52,53,56,57,58,59,61,65,67,71,73,74,75,78,79,83,84,86,87,89, %U A340610 91,92,95,97,101,103,106,107,109,111,113,117,122,125,126,127 %N A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395). %C A340610 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A340610 Robert Israel, <a href="/A340610/b340610.txt">Table of n, a(n) for n = 1..10000</a> %F A340610 A001222(a(n)) divides A061395(a(n)). %e A340610 The sequence of terms together with their prime indices begins: %e A340610 2: {1} 29: {10} 56: {1,1,1,4} %e A340610 3: {2} 30: {1,2,3} 57: {2,8} %e A340610 5: {3} 31: {11} 58: {1,10} %e A340610 6: {1,2} 35: {3,4} 59: {17} %e A340610 7: {4} 37: {12} 61: {18} %e A340610 9: {2,2} 38: {1,8} 65: {3,6} %e A340610 11: {5} 39: {2,6} 67: {19} %e A340610 13: {6} 41: {13} 71: {20} %e A340610 14: {1,4} 43: {14} 73: {21} %e A340610 17: {7} 45: {2,2,3} 74: {1,12} %e A340610 19: {8} 47: {15} 75: {2,3,3} %e A340610 20: {1,1,3} 49: {4,4} 78: {1,2,6} %e A340610 21: {2,4} 50: {1,3,3} 79: {22} %e A340610 23: {9} 52: {1,1,6} 83: {23} %e A340610 26: {1,6} 53: {16} 84: {1,1,2,4} %p A340610 filter:= proc(n) local F,m,g,t; %p A340610 F:= ifactors(n)[2]; %p A340610 m:= add(t[2],t=F); %p A340610 g:= numtheory:-pi(max(seq(t[1],t=F))); %p A340610 g mod m = 0; %p A340610 end proc: %p A340610 select(filter, [$2..1000]); # _Robert Israel_, Feb 08 2021 %t A340610 Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&] %Y A340610 Note: Heinz numbers are given in parentheses below. %Y A340610 The case of equality is A047993 (A106529). %Y A340610 The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853. %Y A340610 These are the Heinz numbers of certain partitions counted by A168659. %Y A340610 The reciprocal version is A340609. %Y A340610 The squarefree case is A340828 (A340856). %Y A340610 A001222 counts prime factors. %Y A340610 A006141 counts partitions whose length equals their minimum (A324522). %Y A340610 A056239 adds up prime indices. %Y A340610 A061395 selects the maximum prime index. %Y A340610 A067538 counts partitions whose length divides their sum (A316413). %Y A340610 A067538 counts partitions whose maximum divides their sum (A326836). %Y A340610 A112798 lists the prime indices of each positive integer. %Y A340610 A200750 counts partitions with length coprime to maximum (A340608). %Y A340610 A325134 = A001222 + A061395. %Y A340610 A326845 = A056239 * A061395. %Y A340610 Cf. A244990/A244991, A326837, A326849 (A326848), A340653, A340691, A340693 (A340606), A340787/A340788. %K A340610 nonn %O A340610 1,1 %A A340610 _Gus Wiseman_, Jan 27 2021