cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

This page as a plain text file.
%I A340610 #10 Feb 09 2021 02:45:59
%S A340610 2,3,5,6,7,9,11,13,14,17,19,20,21,23,26,29,30,31,35,37,38,39,41,43,45,
%T A340610 47,49,50,52,53,56,57,58,59,61,65,67,71,73,74,75,78,79,83,84,86,87,89,
%U A340610 91,92,95,97,101,103,106,107,109,111,113,117,122,125,126,127
%N A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).
%C A340610 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A340610 Robert Israel, <a href="/A340610/b340610.txt">Table of n, a(n) for n = 1..10000</a>
%F A340610 A001222(a(n)) divides A061395(a(n)).
%e A340610 The sequence of terms together with their prime indices begins:
%e A340610      2: {1}        29: {10}       56: {1,1,1,4}
%e A340610      3: {2}        30: {1,2,3}    57: {2,8}
%e A340610      5: {3}        31: {11}       58: {1,10}
%e A340610      6: {1,2}      35: {3,4}      59: {17}
%e A340610      7: {4}        37: {12}       61: {18}
%e A340610      9: {2,2}      38: {1,8}      65: {3,6}
%e A340610     11: {5}        39: {2,6}      67: {19}
%e A340610     13: {6}        41: {13}       71: {20}
%e A340610     14: {1,4}      43: {14}       73: {21}
%e A340610     17: {7}        45: {2,2,3}    74: {1,12}
%e A340610     19: {8}        47: {15}       75: {2,3,3}
%e A340610     20: {1,1,3}    49: {4,4}      78: {1,2,6}
%e A340610     21: {2,4}      50: {1,3,3}    79: {22}
%e A340610     23: {9}        52: {1,1,6}    83: {23}
%e A340610     26: {1,6}      53: {16}       84: {1,1,2,4}
%p A340610 filter:= proc(n) local F,m,g,t;
%p A340610   F:= ifactors(n)[2];
%p A340610   m:= add(t[2],t=F);
%p A340610   g:= numtheory:-pi(max(seq(t[1],t=F)));
%p A340610   g mod m = 0;
%p A340610 end proc:
%p A340610 select(filter, [$2..1000]); # _Robert Israel_, Feb 08 2021
%t A340610 Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
%Y A340610 Note: Heinz numbers are given in parentheses below.
%Y A340610 The case of equality is A047993 (A106529).
%Y A340610 The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
%Y A340610 These are the Heinz numbers of certain partitions counted by A168659.
%Y A340610 The reciprocal version is A340609.
%Y A340610 The squarefree case is A340828 (A340856).
%Y A340610 A001222 counts prime factors.
%Y A340610 A006141 counts partitions whose length equals their minimum (A324522).
%Y A340610 A056239 adds up prime indices.
%Y A340610 A061395 selects the maximum prime index.
%Y A340610 A067538 counts partitions whose length divides their sum (A316413).
%Y A340610 A067538 counts partitions whose maximum divides their sum (A326836).
%Y A340610 A112798 lists the prime indices of each positive integer.
%Y A340610 A200750 counts partitions with length coprime to maximum (A340608).
%Y A340610 A325134 = A001222 + A061395.
%Y A340610 A326845 = A056239 * A061395.
%Y A340610 Cf. A244990/A244991, A326837, A326849 (A326848), A340653, A340691, A340693 (A340606), A340787/A340788.
%K A340610 nonn
%O A340610 1,1
%A A340610 _Gus Wiseman_, Jan 27 2021