This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340611 #7 Jan 30 2021 22:50:56 %S A340611 1,0,1,0,0,1,1,1,1,0,1,1,2,2,3,3,4,4,4,4,4,4,5,5,6,7,8,10,12,14,16,19, %T A340611 21,24,27,29,32,34,36,38,41,42,45,47,50,52,56,58,63,66,71,75,83,88,98, %U A340611 106,118,128,143,155,173,188,208,226,250,270,297,321,350 %N A340611 Number of integer partitions of n of length 2^k where k is the greatest part. %C A340611 Also the number of integer partitions of n with maximum 2^k where k is the length. %e A340611 The partitions for n = 12, 14, 16, 22, 24: %e A340611 32211111 32222111 32222221 33333322 33333333 %e A340611 33111111 33221111 33222211 33333331 4222221111111111 %e A340611 33311111 33322111 4222111111111111 4322211111111111 %e A340611 33331111 4321111111111111 4332111111111111 %e A340611 4411111111111111 4422111111111111 %e A340611 4431111111111111 %e A340611 The conjugate partitions: %e A340611 (8,2,2) (8,3,3) (8,4,4) (8,7,7) (8,8,8) %e A340611 (8,3,1) (8,4,2) (8,5,3) (8,8,6) (16,3,3,2) %e A340611 (8,5,1) (8,6,2) (16,2,2,2) (16,4,2,2) %e A340611 (8,7,1) (16,3,2,1) (16,4,3,1) %e A340611 (16,4,1,1) (16,5,2,1) %e A340611 (16,6,1,1) %t A340611 Table[Length[Select[IntegerPartitions[n],Length[#]==2^Max@@#&]],{n,0,30}] %Y A340611 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340611 A018818 counts partitions of n into divisors of n (A326841). %Y A340611 A047993 counts balanced partitions (A106529). %Y A340611 A067538 counts partitions of n whose length/max divides n (A316413/A326836). %Y A340611 A072233 counts partitions by sum and length. %Y A340611 A168659 = partitions whose greatest part divides their length (A340609). %Y A340611 A168659 = partitions whose length divides their greatest part (A340610). %Y A340611 A326843 = partitions of n whose length and maximum both divide n (A326837). %Y A340611 A340597 lists numbers with an alt-balanced factorization. %Y A340611 A340653 counts balanced factorizations. %Y A340611 A340689 have a factorization of length 2^max. %Y A340611 A340690 have a factorization of maximum 2^length. %Y A340611 Cf. A003114, A006141, A064174, A098124, A117409, A200750, A340385, A340387, A340599, A340601. %K A340611 nonn %O A340611 0,13 %A A340611 _Gus Wiseman_, Jan 28 2021