A340619 n appears A006519(n) times.
1, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 26, 26
Offset: 1
Examples
The first rows, alongside A006519(n), are: n | n-th row | A006519(n) ---+------------------------+----------- 1 | 1 | 1 2 | 2, 2 | 2 3 | 3 | 1 4 | 4, 4, 4, 4 | 4 5 | 5 | 1 6 | 6, 6 | 2 7 | 7 | 1 8 | 8, 8, 8, 8, 8, 8, 8, 8 | 8 9 | 9 | 1 10 | 10, 10 | 2
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..11264
- Wikipedia, Cantor function
Programs
-
Mathematica
A340619[n_] := Array[n &, Table[BitAnd[BitNot[i - 1], i], {i, 1, n}][[n]]]; Table[A340619[n], {n, 1, 26}] // Flatten (* Robert P. P. McKone, Jan 19 2021 *)
-
PARI
concat(apply(v -> vector(2^valuation(v,2), k, v), [1..26]))
-
PARI
a(n) = my(ret=0); forstep(k=logint(n,2),0,-1, if(n > k<<(k-1), ret+=1<
Kevin Ryde, Jan 18 2021
Formula
a(A006520(n)) = n.
a(A006520(n)+1) = n+1.
a(n) = 2^k + (a(r) if r>0), where k such that k*2^(k-1) < n <= (k+1)*2^k and r = n - (k+2)*2^(k-1). - Kevin Ryde, Jan 18 2021
Comments