A340636 Primes of the form k + A037276(k) in more than one way.
251, 2671, 2687, 2753, 23327, 23561, 27827, 28499, 28789, 28817, 29411, 34757, 223441, 226001, 227537, 230849, 231359, 232217, 232259, 232367, 232643, 232919, 233591, 234791, 236129, 236609, 236867, 237857, 238141, 239023, 239873, 240899, 241169, 241343, 241687, 241691, 242447, 242747, 245299
Offset: 1
Examples
a(3) = 2687 = 170 + A037276(170) = 170 + 2517 = 458 + A037276(458) = 458 + 2229. The first term that occurs in more than two ways is a(163) = 2255299 = 4180 + A037276(4180) = 4180 + 2251119 = 21156 + A037276(21156) = 21156 + 2234143 = 29560 + A037276(29560) = 29560 + 2225739.
Links
- Robert Israel, Table of n, a(n) for n = 1..7500
Programs
-
Maple
N:= 5*10^5: # for terms <= N dcat:= proc(L) local i, x; x:= L[-1]; for i from nops(L)-1 to 1 by -1 do x:= 10^(1+ilog10(x))*L[i]+x od; x end proc: A037276:= proc(n) local F; F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]); dcat(map(t -> t[1]$t[2], F)); end proc: A037276(1):= 1: R:= NULL: for n from 1 to N/2 do v:= n + A037276(n); if v < N and isprime(v) then R:= R, v fi; od: S:= {R}: select(s -> numboccur(s,[R])>1, S);