A340614 Irregular table read by rows: Take a Reuleaux triangle with all diagonals drawn, as in A340639. Then T(n,k) = number of k-sided polygons in that figure for k >= 3.
1, 18, 6, 79, 51, 12, 3, 252, 192, 60, 6, 6, 576, 600, 168, 73, 15, 1170, 1380, 390, 126, 6, 12, 2248, 2589, 894, 288, 66, 18, 3, 4026, 4332, 1662, 480, 108, 30, 6426, 7182, 2988, 943, 189, 36, 9942, 11268, 4470, 1266, 300, 84, 0, 6, 14508, 16941, 7098, 2119, 435, 120, 6, 6
Offset: 1
Examples
A Reuleaux triangle with 1 point dividing its edges, n = 2, contains 18 triangles, 6 quadrilaterals and no other n-gons, so the second row is [18, 6]. A Reuleaux triangle with 2 points dividing its edges, n = 3, contains 79 triangles, 51 quadrilaterals, 12 pentagons, 3 hexagons and no other n-gons, so the third row is [79, 51, 12, 3]. The table begins: 1; 18, 6; 79, 51, 12, 3; 252, 192, 60, 6, 6; 576, 600, 168, 73, 15; 1170, 1380, 390, 126, 6, 12; 2248, 2589, 894, 288, 66, 18, 3; 4026, 4332, 1662, 480, 108, 30; 6426, 7182, 2988, 943, 189, 36; 9942, 11268, 4470, 1266, 300, 84, 0, 6; 14508, 16941, 7098, 2119, 435, 120, 6, 6; 21234, 23598, 10194, 3090, 636, 132, 12, 6; 28881, 34086, 13935, 4528, 1041, 177, 24, 3; 39588, 45384, 19470, 5796, 1380, 198, 48; 52197, 60744, 26409, 7831, 1914, 366, 21, 15; 68646, 78492, 33810, 10668, 2358, 396, 60; 87642, 100701, 44670, 13942, 2931, 555, 66, 21, 6; 111084, 127290, 55818, 17082, 3912, 696, 132, 6; 138453, 158907, 70158, 22233, 4869, 1002, 87, 15, 0, 4; 171276, 194622, 87312, 26748, 6132, 846, 174, 6, 6;
Links
- Wikipedia, Reuleaux triangle.
Comments