This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340642 #20 Jan 17 2021 06:20:19 %S A340642 4,9,25,225,676,2116,6724,7921,8100,16641,104329,131044,160801,176400, %T A340642 372100,389376,705600,4096576,7306209,7884864,47444544,146385801, %U A340642 254817369,373262400,607622500,895804900,1121580100,1330936324,1536875209,2097182025,2258435529,2749953600 %N A340642 Perfect powers such that the two immediately adjacent perfect powers both have an exponent greater than 2. %C A340642 Apparently, all known terms (checked through 10^18) are squares with maximum exponent 2, i.e., terms of A111245 (squares that are not a higher power). This would imply that of 3 immediately adjacent perfect powers, at least one is a term of A111245. Is there a known counterexample of 3 consecutive perfect powers, none of which is in A111245? %H A340642 Hugo Pfoertner, <a href="/A340642/b340642.txt">Table of n, a(n) for n = 1..181</a> (terms < 10^18) %e A340642 The first terms, assuming 1 being at least a cube: %e A340642 . %e A340642 n p1 x^p1 p2 a(n) p3 z^p3 %e A340642 =y^p2 %e A340642 1 >2 1 2 4 3 8 %e A340642 2 3 8 2 9 4 16 %e A340642 3 4 16 2 25 3 27 %e A340642 4 3 216 2 225 5 243 %e A340642 5 4 625 2 676 6 729 %o A340642 (PARI) a340642(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(p2>2&p0>2, print1(n1,", ")); n2=n1; n1=n; p2=p1; p1=p0))}; %o A340642 a340642(50000000) %Y A340642 Cf. A001597, A025479, A076467, A097054, A111245, A153158, A340643, A340700, A340701. %K A340642 nonn %O A340642 1,1 %A A340642 _Hugo Pfoertner_, Jan 14 2021