cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340653 Number of balanced factorizations of n.

This page as a plain text file.
%I A340653 #14 Oct 22 2023 15:13:38
%S A340653 1,1,1,0,1,0,1,1,0,0,1,2,1,0,0,1,1,2,1,2,0,0,1,1,0,0,1,2,1,3,1,1,0,0,
%T A340653 0,2,1,0,0,1,1,3,1,2,2,0,1,2,0,2,0,2,1,1,0,1,0,0,1,2,1,0,2,1,0,3,1,2,
%U A340653 0,3,1,3,1,0,2,2,0,3,1,2,1,0,1,2,0,0,0,1,1,2,0,2,0,0,0,3,1,2,2,2,1,3,1,1,3,0,1,3,1,3,0,2,1,3,0,2,2,0,0,4
%N A340653 Number of balanced factorizations of n.
%C A340653 A factorization into factors > 1 is balanced if it is empty or its length is equal to its maximum Omega (A001222).
%H A340653 Antti Karttunen, <a href="/A340653/b340653.txt">Table of n, a(n) for n = 1..65537</a>
%H A340653 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%e A340653 The balanced factorizations for n = 120, 144, 192, 288, 432, 768:
%e A340653   3*5*8    2*8*9    3*8*8      4*8*9      6*8*9      8*8*12
%e A340653   2*2*30   3*6*8    4*6*8      6*6*8      2*8*27     2*2*8*24
%e A340653   2*3*20   2*4*18   2*8*12     2*8*18     3*8*18     2*3*8*16
%e A340653   2*5*12   2*6*12   4*4*12     3*8*12     4*4*27     2*4*4*24
%e A340653            3*4*12   2*2*2*24   4*4*18     4*6*18     2*4*6*16
%e A340653                     2*2*3*16   4*6*12     4*9*12     3*4*4*16
%e A340653                                2*12*12    6*6*12     2*2*12*16
%e A340653                                2*2*2*36   2*12*18    2*2*2*2*48
%e A340653                                2*2*3*24   3*12*12    2*2*2*3*32
%e A340653                                2*3*3*16   2*2*2*54
%e A340653                                           2*2*3*36
%e A340653                                           2*3*3*24
%e A340653                                           3*3*3*16
%t A340653 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A340653 Table[Length[Select[facs[n],#=={}||Length[#]==Max[PrimeOmega/@#]&]],{n,100}]
%o A340653 (PARI) A340653(n, m=n, mbo=0, e=0) = if(1==n, mbo==e, sumdiv(n, d, if((d>1)&&(d<=m), A340653(n/d, d, max(mbo,bigomega(d)), 1+e)))); \\ _Antti Karttunen_, Oct 22 2023
%Y A340653 Positions of zeros are A001358.
%Y A340653 Positions of nonzero terms are A100959.
%Y A340653 The co-balanced version is A340596.
%Y A340653 Taking maximum factor instead of maximum Omega gives A340599.
%Y A340653 The cross-balanced version is A340654.
%Y A340653 The twice-balanced version is A340655.
%Y A340653 A001055 counts factorizations.
%Y A340653 A045778 counts strict factorizations.
%Y A340653 A316439 counts factorizations by product and length.
%Y A340653 A320655 counts factorizations into semiprimes.
%Y A340653 Other balance-related sequences:
%Y A340653 - A010054 counts balanced strict partitions.
%Y A340653 - A047993 counts balanced partitions.
%Y A340653 - A098124 counts balanced compositions.
%Y A340653 - A106529 lists Heinz numbers of balanced partitions.
%Y A340653 - A340597 have an alt-balanced factorization.
%Y A340653 - A340598 counts balanced set partitions.
%Y A340653 - A340600 counts unlabeled balanced multiset partitions.
%Y A340653 - A340656 have no twice-balanced factorizations.
%Y A340653 - A340657 have a twice-balanced factorization.
%Y A340653 Cf. A003963, A117409, A303975, A320656, A339846, A339890, A340608.
%K A340653 nonn
%O A340653 1,12
%A A340653 _Gus Wiseman_, Jan 15 2021
%E A340653 Data section extended up to a(120) by _Antti Karttunen_, Oct 22 2023