This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340656 #8 Jan 19 2021 21:52:35 %S A340656 4,6,8,9,10,14,15,16,21,22,25,26,27,30,32,33,34,35,38,39,42,46,48,49, %T A340656 51,55,57,58,60,62,64,65,66,69,70,72,74,77,78,80,81,82,84,85,86,87,90, %U A340656 91,93,94,95,96,102,105,106,108,110,111,112,114,115,118,119 %N A340656 Numbers without a twice-balanced factorization. %C A340656 We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal: %C A340656 (1) the number of factors; %C A340656 (2) the maximum image of A001222 over the factors; %C A340656 (3) A001221(n). %e A340656 The sequence of terms together with their prime indices begins: %e A340656 4: {1,1} 33: {2,5} 64: {1,1,1,1,1,1} %e A340656 6: {1,2} 34: {1,7} 65: {3,6} %e A340656 8: {1,1,1} 35: {3,4} 66: {1,2,5} %e A340656 9: {2,2} 38: {1,8} 69: {2,9} %e A340656 10: {1,3} 39: {2,6} 70: {1,3,4} %e A340656 14: {1,4} 42: {1,2,4} 72: {1,1,1,2,2} %e A340656 15: {2,3} 46: {1,9} 74: {1,12} %e A340656 16: {1,1,1,1} 48: {1,1,1,1,2} 77: {4,5} %e A340656 21: {2,4} 49: {4,4} 78: {1,2,6} %e A340656 22: {1,5} 51: {2,7} 80: {1,1,1,1,3} %e A340656 25: {3,3} 55: {3,5} 81: {2,2,2,2} %e A340656 26: {1,6} 57: {2,8} 82: {1,13} %e A340656 27: {2,2,2} 58: {1,10} 84: {1,1,2,4} %e A340656 30: {1,2,3} 60: {1,1,2,3} 85: {3,7} %e A340656 32: {1,1,1,1,1} 62: {1,11} 86: {1,14} %e A340656 For example, the factorizations of 48 with (2) and (3) equal are: (2*2*2*6), (2*2*3*4), (2*4*6), (3*4*4), but since none of these has length 2, the sequence contains 48. %t A340656 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340656 Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]=={}&] %Y A340656 Positions of zeros in A340655. %Y A340656 The complement is A340657. %Y A340656 A001055 counts factorizations. %Y A340656 A001221 counts distinct prime factors. %Y A340656 A001222 counts prime factors with multiplicity. %Y A340656 A045778 counts strict factorizations. %Y A340656 A303975 counts distinct prime factors in prime indices. %Y A340656 A316439 counts factorizations by product and length. %Y A340656 Other balance-related sequences: %Y A340656 - A010054 counts balanced strict partitions. %Y A340656 - A047993 counts balanced partitions. %Y A340656 - A098124 counts balanced compositions. %Y A340656 - A106529 lists Heinz numbers of balanced partitions. %Y A340656 - A340596 counts co-balanced factorizations. %Y A340656 - A340597 lists numbers with an alt-balanced factorization. %Y A340656 - A340598 counts balanced set partitions. %Y A340656 - A340599 counts alt-balanced factorizations. %Y A340656 - A340600 counts unlabeled balanced multiset partitions. %Y A340656 - A340652 counts unlabeled twice-balanced multiset partitions. %Y A340656 - A340653 counts balanced factorizations. %Y A340656 - A340654 counts cross-balanced factorizations. %Y A340656 Cf. A112798, A117409, A325134, A339846, A339890, A340607, A340689, A340690. %K A340656 nonn %O A340656 1,1 %A A340656 _Gus Wiseman_, Jan 16 2021