cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340657 Numbers with a twice-balanced factorization.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 36, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 120, 124, 127, 131, 135, 136, 137
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            29: {10}          59: {17}
      2: {1}           31: {11}          61: {18}
      3: {2}           36: {1,1,2,2}     63: {2,2,4}
      5: {3}           37: {12}          67: {19}
      7: {4}           40: {1,1,1,3}     68: {1,1,7}
     11: {5}           41: {13}          71: {20}
     12: {1,1,2}       43: {14}          73: {21}
     13: {6}           44: {1,1,5}       75: {2,3,3}
     17: {7}           45: {2,2,3}       76: {1,1,8}
     18: {1,2,2}       47: {15}          79: {22}
     19: {8}           50: {1,3,3}       83: {23}
     20: {1,1,3}       52: {1,1,6}       88: {1,1,1,5}
     23: {9}           53: {16}          89: {24}
     24: {1,1,1,2}     54: {1,2,2,2}     92: {1,1,9}
     28: {1,1,4}       56: {1,1,1,4}     97: {25}
The twice-balanced factorizations of 1920 (with prime indices {1,1,1,1,1,1,1,2,3}) are (8*8*30) and (8*12*20), so 1920 is in the sequence.
		

Crossrefs

The alt-balanced version is A340597.
Positions of nonzero terms in A340655.
The complement is A340656.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]!={}&]