A340689 Numbers with a factorization of length 2^k into factors > 1, where k is the greatest factor.
1, 16, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 131072, 196608, 262144, 294912, 393216, 442368, 524288, 589824, 663552, 786432, 884736, 995328, 1048576, 1179648, 1327104, 1492992, 1572864, 1769472, 1990656, 2097152, 2239488, 2359296, 2654208, 2985984, 3145728
Offset: 1
Keywords
Examples
The initial terms and a valid factorization of each are: 1 = 16 = 2*2*2*2 384 = 2*2*2*2*2*2*2*3 576 = 2*2*2*2*2*2*3*3 864 = 2*2*2*2*2*3*3*3 1296 = 2*2*2*2*3*3*3*3 1944 = 2*2*2*3*3*3*3*3 2916 = 2*2*3*3*3*3*3*3 4374 = 2*3*3*3*3*3*3*3 6561 = 3*3*3*3*3*3*3*3 131072 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*4 196608 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*3*4 262144 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*4*4 294912 = 2*2*2*2*2*2*2*2*2*2*2*2*2*3*3*4
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Partitions of the prescribed type are counted by A340611.
The conjugate version is A340690.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[1000],Select[facs[#],Length[#]==2^Max@@#&]!={}&]
Extensions
More terms from Chai Wah Wu, Feb 01 2021