cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340689 Numbers with a factorization of length 2^k into factors > 1, where k is the greatest factor.

Original entry on oeis.org

1, 16, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 131072, 196608, 262144, 294912, 393216, 442368, 524288, 589824, 663552, 786432, 884736, 995328, 1048576, 1179648, 1327104, 1492992, 1572864, 1769472, 1990656, 2097152, 2239488, 2359296, 2654208, 2985984, 3145728
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Examples

			The initial terms and a valid factorization of each are:
         1 =
        16 = 2*2*2*2
       384 = 2*2*2*2*2*2*2*3
       576 = 2*2*2*2*2*2*3*3
       864 = 2*2*2*2*2*3*3*3
      1296 = 2*2*2*2*3*3*3*3
      1944 = 2*2*2*3*3*3*3*3
      2916 = 2*2*3*3*3*3*3*3
      4374 = 2*3*3*3*3*3*3*3
      6561 = 3*3*3*3*3*3*3*3
    131072 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*4
    196608 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*3*4
    262144 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*4*4
    294912 = 2*2*2*2*2*2*2*2*2*2*2*2*2*3*3*4
		

Crossrefs

Partitions of the prescribed type are counted by A340611.
The conjugate version is A340690.
A001055 counts factorizations, with strict case A045778.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],Length[#]==2^Max@@#&]!={}&]

Extensions

More terms from Chai Wah Wu, Feb 01 2021