This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340693 #11 Jan 25 2021 19:04:37 %S A340693 1,1,1,2,2,3,2,5,5,7,7,10,10,14,14,17,19,24,24,32,33,42,43,58,59,75, %T A340693 79,98,104,124,128,156,166,196,204,239,251,292,306,352,372,426,445, %U A340693 514,543,616,652,745,790,896,960,1080,1162,1311,1400,1574,1692,1892 %N A340693 Number of integer partitions of n where each part is a divisor of the number of parts. %C A340693 The only strict partitions counted are (), (1), and (2,1). %C A340693 Is there a simple generating function? %e A340693 The a(1) = 1 through a(9) = 7 partitions: %e A340693 1 11 21 22 311 2211 331 2222 333 %e A340693 111 1111 2111 111111 2221 4211 4221 %e A340693 11111 4111 221111 51111 %e A340693 211111 311111 222111 %e A340693 1111111 11111111 321111 %e A340693 21111111 %e A340693 111111111 %t A340693 Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}] %Y A340693 Note: Heinz numbers are given in parentheses below. %Y A340693 The reciprocal version is A143773 (A316428), with strict case A340830. %Y A340693 The case where length also divides n is A326842 (A326847). %Y A340693 The Heinz numbers of these partitions are A340606. %Y A340693 The version for factorizations is A340851, with reciprocal version A340853. %Y A340693 A018818 counts partitions of n into divisors of n (A326841). %Y A340693 A047993 counts balanced partitions (A106529). %Y A340693 A067538 counts partitions of n whose length/max divides n (A316413/A326836). %Y A340693 A067539 counts partitions with integer geometric mean (A326623). %Y A340693 A072233 counts partitions by sum and length. %Y A340693 A168659 = partitions whose greatest part divides their length (A340609). %Y A340693 A168659 = partitions whose length divides their greatest part (A340610). %Y A340693 A326843 = partitions of n whose length and maximum both divide n (A326837). %Y A340693 A330950 = partitions of n whose Heinz number is divisible by n (A324851). %Y A340693 Cf. A000041, A003114, A006141, A033630, A064174, A074761, A102627, A200750, A237984, A298423, A340827. %K A340693 nonn %O A340693 0,4 %A A340693 _Gus Wiseman_, Jan 23 2021